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Abstract We study two weighted graph coloring problems, in which one assigns g colors
to the vertices of a graph such that adjacent vertices have different colors, with a vertex
weighting w that either disfavors or favors a given color. We exhibit a weighted chromatic
polynomial Ph(G, g, w) associated with this problem that generalizes the chromatic polyno-
mial P (G, gq). General properties of this polynomial are proved, and illustrative calculations
for various families of graphs are presented. We show that the weighted chromatic polyno-
mial is able to distinguish between certain graphs that yield the same chromatic polynomial.
We give a general structural formula for Ph(G, g, w) for lattice strip graphs G with periodic
longitudinal boundary conditions. The zeros of Ph(G, g, w) in the ¢ and w planes and their
accumulation sets in the limit of infinitely many vertices of G are analyzed. Finally, some
related weighted graph coloring problems are mentioned.

Keywords Graph coloring - Potts model

1 Introduction

Recently we have formulated two weighted graph coloring problems in which one assigns
q colors to the vertices of a graph such that adjacent vertices (i.e., vertices connected by
an edge of the graph) have different colors, with a vertex weighting w that either disfavors
(for 0 < w < 1) or favors (for w > 1) a given color [1]. We label these with the abbrevia-
tions DFCP and FCP for disfavored-color and favored-color weighted graph vertex coloring
problems. Since all of the colors are, a priori, equivalent, it does not matter which color
one takes to be subject to the weighting. In the present paper we study these interesting
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Weighted Graph Colorings 497

weighted graph coloring problems in detail. An assignment of g colors to the vertices of a
graph G, such that adjacent vertices have different colors, is called a “proper g-coloring” of
the vertices of G. We analyze the properties of an associated weighted chromatic polyno-
mial that we denote Ph(G, g, w), which generalizes the chromatic polynomial P (G, ¢) and
constitutes a w-dependent measure, extended from the integers to the real numbers, of the
number of proper g-colorings of the vertices of G. In the weighted graph coloring problem,
with ¢ € N, being the number of colors, for a given graph G, P(G, q) is a map from N
to N, while Ph(G, g, w) is a map from N, x I to R, where I denotes the DFCP interval
0 <w < 1 or the FCP interval w > 1. In both cases, one can formally extend the domain of
g and w to R or, indeed, C, and the latter extension is, in fact, necessary when one analyzes
the zeros of P(G, q) or Ph(G, q, w), respectively. The polynomial Ph(G, g, w) is equivalent
to the partition function of the g-state Potts antiferromagnet on the graph G in an external
magnetic field H, in the limit where the spin-spin exchange coupling becomes infinitely
strong, so that the only spin configurations contributing to this partition function are those
for which spins on adjacent vertices are different [1, 2]. There has been continuing interest
in the Potts model and chromatic and Tutte polynomials for many years; reviews of the Potts
model include [3-6] and reviews of chromatic and Tutte polynomials include [7-15].

There are a number of motivations for this study. One is the intrinsic mathematical inter-
est of these two new kinds of graph coloring problems. A second stems from the equivalence
to the statistical mechanics of the Potts antiferromagnet in a magnetic field. A third is the
fact that these weighted graph coloring problems have physical applications.'

We remark on some special cases of Ph(G,q,w). The case w = 1 is equivalent to
the usual (unweighted) chromatic polynomial, P(G, q), counting the number of proper
g-colorings of the vertices of G:

Ph(G,q,1)=P(G,q). (1.1)

The chromatic number of G, denoted x (G), is the minimal number of colors for which
one can carry out a proper ¢g-coloring of the vertices of G. For w = 0, one is complete forbid-
den from assigning the disfavored color to any of the vertices, so that the problem reduces to
that of a proper coloring of the vertices of G with ¢ — 1 colors without any weighting among
these g — 1 colors, which is thus described by the usual unweighted chromatic polynomial
P(G,q —1):

Ph(G,q,0)=P(G,q —1). (1.2)
Thus, the DFCP, described by Ph(G, g, w) with 0 < w < 1, may be regarded as interpolating
between P(G,q) and P(G,q — 1). In the FCP, as w increases above 1 to large positive
values, the favored weighted of one color is increasingly in conflict with the strict constraint
that no two adjacent vertices have the same color. Hence, the FCP involves frustration in the

technical sense of statistical mechanics, i.e. mutually conflicting tendencies built into the
system.

2 Definitions and Some Basic Properties
2.1 Relation with Potts Model in an External Magnetic Field

Consider a graph G = (V, E), defined by its set of vertices V and edges (= bonds) E.
A spanning subgraph G’ C G is defined as the subgraph containing the same set of vertices

For more details, see the online version of this paper [16].
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V and a subset of the edges; G’ = (V, E’) with E’ C E. For a graph G we denote the number
of vertices, edges, and connected components as n(G), e(G), and k(G), respectively. Where
no confusion can result, we shall often abbreviate n(G) as simply n. We further denote
the connected subgraphs of a spanning subgraph G" as G}, i =1, ..., k(G’). To obtain an
expression for Ph(G, g, w), we make use of the fact that it is a special case of the partition
function for the g-state Potts model in an external magnetic field in the limit of infinitely
strong antiferromagnetic spin-spin coupling. In thermal equilibrium at temperature 7', the
general Potts model partition function is given by

Z=>) " 2.1
{on}
with the Hamiltonian
H=—T 8.0, = HY 801, (2.2)
(ij) t
where i, j, £ label vertices (sites) in G, o; =1, ..., g are classical spin variables on these

vertices, B = (kzT)~!, and (ij) denote pairs of adjacent vertices. Without loss of generality,
we have taken the magnetic field H to single out the spin value o; = 1. Let us introduce the
notation

K=8J, h=pH, y=eéX, v=y—1, w=e. (2.3)

Thus, the physical ranges of v are v > 0 for the Potts ferromagnet, and —1 < v < 0 for Potts
antiferromagnet. The weighted chromatic polynomial is then obtained by choosing the an-
tiferromagnetic sign of the spin-spin coupling, J < 0 and taking K — —oo while keeping
h = BH fixed. Since K = SJ, the limit K — —oo results if one takes J — —oo while
holding 7 and H fixed and finite. Alternatively, the limit K — —oo can be obtained by
taking the zero-temperature limit 7 — 0, i.e., 8 — oo, with J fixed and finite and H — 0
so as to keep h = B H fixed and finite. The limit K — —oo guarantees that no two adjacent
spins have the same value, or, in the coloring context, no two vertices have the same color.
One sees that in this statistical mechanics context, it is the external magnetic field that pro-
duces the weighting that favors or disfavors a given value for the spins o;. Positive H gives
a weighting that favors spin configurations in which spins have a particular value, say 1,
or equivalently, vertex colorings with this value of the color assignment, while negative H
disfavors such configurations. For positive and negative H, the corresponding ranges of w
are w > 1 and 0 < w < 1, respectively.

The partition function Z can be written in a manner that does not make explicit reference
to the spins o; or the summation over spin configurations, but instead as a sum of terms
arising from spanning subgraphs G’ € G. The formula, obtained by F.Y. Wu, is [17]

k(G
Z(G.q.v.w)y= Y v ] (qg—14w"). (2.4)

G'SG i=I
This can be understood by writing (2.1) with (2.2) as
z= Z[l_[ﬂ + vag,-a»} [l_[e“f’“]- (2.5)
¢

{on} = (i)
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If 4 = 0, then each edge of a particular G’ gives a contribution of v and represents a spin
configuration in which the spins on the ends of this edge have the same value. The spins
in each component of G’ are connected by edges, so they all have the same value, and
there are g possibilities for this value. In this case, from (2.5) one sees that the resultant
term in summand of (2.4) is simply v*©"¢*(G") _If h = 0, all of the spins in each connected
component G; of G" have either the value o; = 1 or all of these spins have one of the other
g — 1 values. If they all have the value 1, then each vertex in this G; gives a contribution
of w, so from G; one gets the contribution w"(Gt/‘), while if they all have one of the other
q — 1 values, the contribution is 1. In general, therefore, the contribution of the component
G;inG'is(g—1+ w @), Taking account of all of the k(G’) components in each G’ gives
the factor [T%9” (g — 1+ w™©@D), which is then summed over all G’ € G. The Wu formula
(2.4) is a generalization of the Fortuin-Kasteleyn formula for the zero-field model [18].
The original definition of the Potts model, (2.1) and (2.2), requires ¢ to be in the set of
positive integers N . This restriction is removed by (2.4). Equation (2.4) shows that Z is a
polynomial in the variables ¢, v, and w, hence our notation Z(G, ¢, v, w).

In the special case of zero external magnetic field, H = 0, whence w = 1, one has the
reduction to the Fortuin-Kasteleyn cluster formula [18]

Z(G.q.v. ) =Y v DgHD, 2.6)

G'CG

This zero-field Potts model partition function is equivalent to the Tutte polynomial
T(G,x,Yy), defined by

T(G,x,y)= Y (x = DOHO(y—1)«D, @7
G'CG

where ¢(G’) is the number of linearly independent cycles in G’, satistying ¢(G’) = e(G’) +
k(G") —n(G"), and

x=1+7 2.8)
v

(We remark that k(G’) — k(G’) and ¢(G’) are the rank and co-rank of G’.) The equivalence
is given by the relation

Z(G,q,v) = (x — D"y - 1D)"OT(G, x,y). 2.9)

In [1] we defined a generalization of the Tutte polynomial,

U(G.x.y.w) = (x = DOy = )7"D 3 7 (y = 1)
G'cG

k(G)
< [ ]y —x—y+w"). (2.10)

i=1

This function satisfies U(G, x, y, w) = (x — 1) *&(y — 1) "D Z(G, q, v, w) and reduces
to the Tutte polynomial if w =1: U(G, x,y,1) =T(G, x, y).

The K — —oo limit that yields the weighted chromatic polynomial is equivalent to
v=-—1,s0

Ph(G,q,w) =Z(G,q,—1, w). 2.11)
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Hence, a constructive formula for Ph(G, g, w) is

k(G")

Ph(G,q.w)= Y (=D)“D [](g—1+uw"). (2.12)
i=l1

G'cG

For the special case i =0, i.e., w = 1, one thus has the result of (1.1). The limit # — —oo,
i.e., w — 0, effectively removes one of the possible values of the dynamical variables o;, or
equivalently, in the spanning subgraph formula (2.4), one of the values of ¢, so

2(G,q,v,0)=2Z(G,q — 1,v,1). (2.13)

The special case of this for v = —1 is (1.2). It follows that each of the zeros of Ph(G, g, 1) =
P(G, g) in the complex g plane shifts to the right by one unit as one replaces the value w = 1
by w = 0. In the limit as n — oo, the accumulation set of the zeros, B, also is replaced by
its identical image shifted to the right in the ¢ plane as one replaces w =1 by w =0.

2.2 Results for Graphs with Loops, Multiple Edges, and Multiple Components

If G has any loop, defined as an edge that connects a vertex to itself, then a proper g-coloring
is impossible. This is because such a g-coloring requires that any two adjacent vertices have
different colors, but since the vertices connected by an edge are adjacent, the presence of a
loop in G means that a vertex is adjacent to itself. Thus,

Ph(G,q,w)=0 if G contains a loop. (2.14)

Hence, to avoid having Ph(G, q, v) vanish trivially, we shall restrict our analysis in this pa-
per to loopless graphs G. Accordingly, in the text below, where G = (V, E) is characterized
as having a non-empty edge set E # {J, it is understood that E does not contain any loops.

Another basic property of a chromatic polynomial is that as long as two vertices are
joined by an edge, adding more edges connecting these vertices does not change the chro-
matic polynomial. This is clear from the fact that the chromatic polynomial counts the num-
ber of proper g-colorings of the vertices of G, and the relevant condition—that two adjacent
vertices must have different colors—is the same regardless of whether one or more than one
edges join these vertices. Let us define an operation of “reduction of multiple edge(s)” in G,
denoted Rg(G), as follows: if two vertices are joined by a multiple edge, then delete all
but one of these edges, and carry out this reduction on all edges, so that the resultant graph
RE(G) has only single edges. Then if G is a graph that contains one or more multiple edges
joining some set(s) of vertices,

P(G,q) = P(Re(G).q). (2.15)

Since the same proper g-coloring condition holds for the weighted chromatic polynomial,
we have

Ph(G, q,w) =Ph(Re(G),q,w). (2.16)

Moreover, if G consists of two disjoint parts, G; and G,, then Ph(G, g, w) is simply the
product Ph(G, q, w) = Ph(Gy, q, w)Ph(G,, g, w). Hence, without loss of generality, we
will generally restrict to connected graphs G.
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2.3 General Structural Properties of Ph(G, g, w)

Here we prove some general structural properties of Ph(G, ¢, w) that hold for an arbitrary
graph G. As discussed above, to avoid having Ph(G, g, w) vanish trivially, we take G to
be loopless, and without loss of generality, we assume that G is connected. We first apply
the proper g-coloring condition to analyze properties of Ph(G, g, w) for g € N... Since this

proper g-coloring condition cannot be met for integer ¢ =1, ..., x(G) — 1, it follows that
x(G)—1
Ph(G, q, w) contains a factor 1_[ (g—1J). 2.17)

j=1

Provided that G = (V, E) has at least one edge, i.e., E # J, the proper g-coloring condition
cannot be satisfied if ¢ = 1. Hence, a corollary of (2.17) is

If E #, then Ph(G, q, w) contains a factor (g — 1). (2.18)

We can show that if w = 0, then the factor (¢ — 1) is present even if G does not contain
any edge. Using our previous result that Z(G, g, v,0) = Z(G,q — 1, v, 1) and the fact that
Z(G,q,v,1) has a factor of g, we obtain the result that Z(G, ¢, v, 0) contains the factor
g — 1 and hence Ph(G, g, 0) contains a factor (¢ — 1). More generally, since Ph(G, q,0) =
P(G,q — 1) and P(G, g — 1) vanishes for integer ¢ =1, ..., x(G), it follows that

x(G)
Ph(G, g, 0) contains a factor 1_[ (qg—J)- (2.19)
j=1
Substituting ¢ = 0 in (2.4) and using the factorization
n(G)—1
w @ —l=w-1 Y w (2.20)
=0
proves that
Z(G, 0, v, w) contains a factor of (w — 1). (2.21)
Setting v = —1, we thus deduce that [1]
Ph(G, 0, w) contains a factor of (w — 1). (2.22)
It is convenient to define the notation
g=q—1, w=w-—1. (2.23)

From (2.4), it follows that we can write Z(G, ¢, v, w) in several equivalent ways:

n(G) e(G) n(G) e(G)
ZCXRRTED 3D SINALIED 9p S IET
r,t=0 s=0 rit=0 s=0
n(G) e(G) n(G) e(G)
=Y Y G VW =" drsug v, (2.24)
r,t=0 s=0 rt=0 s=0
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where a,;,, b, 5, Cr51, and d, , are integers. Some a,,, and b,;, can be negative, but,
as we showed in [1], the nonzero c,,, and d,;, are positive. From these equations, one

infers corresponding ones for Ph(G, g, w) by setting v = —1, i.e., y = 0. Note that in the
n(G) e

10 x(:GO) bys;q" y*w', clearly only the terms with s = 0

polynomial Z(G,q,v,w) =)
contribute to Ph(G, q, w).

From (2.4), it is evident that the term in Ph(G, g, w) of maximal degree in ¢, or equiv-
alently, in g, arises from the contribution of the spanning subgraph G’ with no edges, for
which k(G") = n(G). This term is (with n = n(G))

(g +w)". (2.25)
It follows that
@n,0,0 = by.0,0=Cn00=dnoo=1. (2.26)

There are e(G) spanning subgraphs G’ with one edge, since there are ¢(G) ways of choosing
this edge. Hence (with our restriction to loopless G), the contribution of these G’ in (2.4) is

e(G)o(q +w?)(G +w)" . (2.27)

Expanding the terms in (2.25) and (2.27) in powers of ¢ and w, we find that the term in
Z(G,q,v,w) of degreen — 1 in g is

(e(Gyv +nw)g"". (2.28)

Similarly, expanding the terms in (2.25) and (2.27) in powers of ¢ and w, we find that the
term in Z(G, g, v, w) of degree n — 1 in g is

(e(Gyv+n(w—1)g" " (229

For our analysis below and for comparisons with chromatic polynomials, it will be con-
venient to write Ph(G, g, w) as a polynomial in ¢ with w-dependent coefficients, which we
denote oG ¢ (w):

Ph(G.q. w) =) g ;j(w)qg"~’. (2.30)
j=0
From our discussion above, we have
agn=1, (2.31)
and, using also (2.16),
g1 = —(e(Rp(G) +n(l — w)). (2.32)

Moreover, from (2.22), it follows that the ¢° term in Ph(G, g, w) contains a factor of
(w—1),1ie.,

.o contains a factor of (w — 1). (2.33)

It is also useful to express Ph(G, g, w) as a polynomial in w with g-dependent coeffi-
cients, which we denote B ¢(q) (there should not be confusion with 8 =1/(kgT)):

dy(G)

Ph(G.q.w)= > Be.j(@w’, (2.34)
j=0
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where d,,(G) = deg,,(Ph(G, g, w)) is the (maximal) degree of Ph(G, ¢, w) in w. This de-
gree, d,,(G) is a G-dependent number less than n. To understand this, we recall that the
maximum degree of Z(G, ¢, v, w) in w is n. This term is y*©w" = (v + 1)*@w" and cor-
responds to all of the vertices having the same color, 1. However, the possibility that all of
the vertices have the same color, and, indeed, the possibility that any adjacent vertices have
the same color, are excluded for Ph(G, g, w), as is evident from the fact that the coefficient
of w" vanishes for v = —1. Hence, d,,(G) < n. We shall give this degree below for various
families of graphs. Since all of the nontrivial graphs G = (V, E) that we shall consider have
at least one edge, i.e., E # (J, (2.18) shows that for these, Ph(G, g, w) has the factor (g — 1).
In analyzing zeros of Ph(G, g, w) it will be convenient to separate this factor out, and we
thus define, for graphs containing at least one edge,

Ba.j(q) = (g — 1)Bc.;(q), (2.35)
so that
dy(G)
If E#£@, then Ph(G,q,w)=(q—1) Z Be.j(@w’, (2.36)
j=0

where BGA, j(q) are polynomials in g. From (2.34) and (1.2), we obtain the relation
Ph(G,q,0) = Bgolg) = P(G,q — ). (2.37)
Combining this with (2.19), we have the result that

x(G)
Be.o contains a factor 1_[ qg—J). (2.38)

j=1

Now, Ph(G,q,1) = Z‘;“:'E)G) Be,j, but also Ph(G,q,1) = P(G, g), so, using the fact that
P(G,q)=0forintegerq =0, ..., x(G) — 1, we derive the following factorization property
for the sum of the B¢ ; coefficients:

dy (G) x(G)—1
Z Bg,; contains a factor l_[ qg—J. (2.39)
j=0 j=0

2.4 Absence of Deletion-Contraction Relation

For a graph G, we denote the graph obtained by deleting an edge ¢ € E as G — e and
the graph obtained by identifying the two vertices connected by this edge ¢ as G/e. The
chromatic polynomial satisfies the deletion-contraction relation P(G, g, v) = P(G—e,q) —
P(G/e, q). In contrast, for w not equal to 1 or 0, the polynomial Ph(G, g, w) does not, in
general, satisfy this deletion-contraction relation. It is of interest to examine the quantities
that measure the deviation from such a relation, namely

APh(G,e,q,w) =Ph(G,q,w) — [Ph(G —¢,q,w) — Ph(G /e, q, w)]. (2.40)

We know that APh(G, e, g, w) contains a factor w(w — 1) since for w =1 and w =0,
Ph(G, g, w) is equal, respectively, to P(G, g) and P(G, g — 1), both of which do satisfy the
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deletion-contraction relation. Furthermore, because of (2.18), if G, G — ¢, and G /e contain
at least one edge, then APh(G, e, g, w) contains the factor (g — 1).

As an illustration, using our explicit calculations given below for n-vertex line graphs L,
and circuit graphs C,, we find the following results. For the first two graphs, L3 and Cj, the
deletion and contraction on any edge gives the same result, so we need not specify which
edge is involved. We find, for any edge e,

APh(Ls, e, g, w) = APh(Cs, e, q, w) = —w(w — 1)(g — 1) (2.41)

and
APh(Cy,e,q,w)=—w(w —1)(g — (g —2). (2.42)

For L4, denoting e,,;., as either of the two outer edges and e,,;; as the middle edge, we find
API(Ly, epia, g, w) = —w(w — 1)(g — 1) (2:43)

and
APh(Ly, eputer,q, w) = —w(w — (g — D(g +w —2). (2.44)

It is straightforward to calculate similar differences APh(G, e, g, w) for graphs with more
vertices and edges, but these are sufficient to illustrate the absence of a usual deletion-
contraction relation for the weighted chromatic polynomial.

2.5 T, P, U, and Ph Equivalence Classes

An important property of the weighted chromatic polynomial Ph(G, g, w) is the fact that it
can distinguish between certain graphs that yield the same chromatic polynomial P (G, q).
More generally, an important property of the partition function of the Potts model in a
nonzero external magnetic field, Z(G, ¢q, v, w), or equivalently, the function U (G, x, y, w)
that we defined in [1], is that Z(G, ¢, v, w) and U(G, x, y, w) distinguish between graphs
that yield the same zero-field Potts model partition function, Z(G, ¢, v, 1) or equivalently,
Tutte polynomial 7 (G, x, y). We begin with some definitions. Two graphs G and H are de-
fined as (i) Tutte-equivalent (7 -equivalent) if they have the same Tutte polynomial, or equiv-
alently, the same zero-field Potts model partition function, Z(G, ¢, v, 1); (ii) U-equivalent
if they have the same Z(G, g, v, w); (iii) chromatically equivalent (P-equivalent) if they
have the same chromatic polynomial, P(G, ¢), and (iv) Ph-equivalent if they have the same
weighted chromatic polynomial, Ph(G, q, w).

Let us give some examples. Recall the definition that a tree graph is a connected graph
that contains no circuits (cycles). The set of tree graphs {G;,...,} With a given number, n,
of vertices, forms a Tutte equivalence class, with 7 (Gyee.n, X, y) = x"* 1 or equivalently,
Z(G,q,v,1)=¢q(q + v)"~'. However, the Potts partition function in a field, Z(G, g, v, w),
or equivalently, the function U (G, x, y, w) is able to distinguish between different tree
graphs in a Tutte-equivalence class. For instance, consider the n = 4 line graph L, and
star graph S, (the graph with one central vertex connected to three outer vertices by corre-
sponding edges). These have the same Tutte polynomial T (L4, x, y) = T(S4, x, y) = x>, or
equivalently, the same zero-field Potts partition function Z(L4, q,v,1) = Z(S4,q,v,1) =
q(g + v)3, but the full Potts partition functions, Z(L4, g, v, w) and Z(S4, ¢, v, w) are dif-
ferent (see (3.6) and (3.16) below). Similarly, L, and S4 are chromatically equivalent, with
P (L4, q) = P(S4,q) = q(q — 1)? as a special case of the result P (G ce.n, q) = q(q — 1)
for any tree graph with n vertices, G,,...,. However, from our calculations given below in
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(3.15) and (3.19), we find that Ph(L4, g, w) and Ph(S4, g, w) are different. We reach the
same conclusion for all of the tree graphs that we have studied, i.e., although the set of tree
graphs with a given number, n, of vertices, forms a chromatic equivalence class, these graphs
have different weighted chromatic polynomials. We will illustrate this below for n =5 and
n==6.

A second set of examples involves graphs with multiple edges. Let us assume that G
contains one or more multiple edges joining pair(s) of vertices. Such graphs are not Tutte-
equivalent, but, as noted above, are chromatically equivalent. Because the same proper g-
coloring condition also holds for weighted chromatic polynomials, these graphs are also in
the same Ph-equivalence class, as was stated in (2.16). A simple example is provided by the
line and circuit graphs with n = 2 vertices, L, and C,, the latter of which has a double edge
connecting the two vertices. One has

Z(Ly, g, v,w)=(q — 1 +w)> +v(g —1+w?) (2.45)
and
Z(Cy g, v,w)=(q — 1+ w)? +v(+2)(g — 1 +w?), (2.46)
so that
Z(Cy,q,v,w) —Z(Ly,q,v,w)=v(v+1)(g—1+ wz). (2.47)

The fact that the difference in (2.47) vanishes for v = —1, i.e., that Ph(L,,q,w) =
Ph(C», q, w), is a special case of the general result (2.16).

Because of the above-mentioned result that all n-vertex tree graphs are chromatically
equivalent, in conjunction with the property that Ph(G, g, w) is a chromatic polynomial
for w =1 and w = 0, it follows that the difference between Ph(G, q, w) and Ph(H, g, w)
between two chromatically equivalent graphs G and H must vanish if w =1 or w = 0. Since
these are all polynomials, it thus follows that the difference Ph(G, g, w) — Ph(H, g, w) must
have w and w — 1 as factors. Furthermore, if ¢ = 1, then

Z(G,1,v, w) = y* @O, (2.48)

If G has at least one edge, then Z(G, 1,v,w) =0if y =0, i.e., v = —1, Now in order to
be chromatically equivalent, a necessary condition is that two graphs G and H must have
the same number of vertices, n(G) = n(H), since the degree in g of P(G, q) is n(G). An
elementary property of the chromatic polynomial P (G, q), proved by iterative application
of the deletion-contraction theorem, is that the coefficient of the ¢"@~! term is —e(Rz(G)).
Therefore, another necessary condition that two graphs G and H be chromatically equiv-
alent is that e(Rg(G)) = e(Rg(H)). Now recall (2.18), according to which if G contains
at least one edge, then Ph(G, 1, w) = 0. Hence, if G and H are chromatically equiva-
lent, then either (i) neither contains any edges, in which case Ph(G, g, w) = Ph(H, g, w) =
(g — 1+ w)", where n = n(G) = n(H), or (ii) if G, and hence H, contains at least one
edge, Ph(G, 1, w) = Ph(H, 1, w) =0. Hence, if G and H are chromatically equivalent and
contain at least one edge, then the difference Ph(G, g, w) — Ph(H, g, w) contains the fac-
tor (¢ — 1). These results on the factors of Ph(G, g, w) — Ph(H, g, w) for chromatically
equivalent graphs will be evident in our explicit calculations to be presented below.
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2.6 On the Weighted Face Coloring Problem for Planar Graphs

Let us consider a planar graph G = (V, E). We recall that the dual of this graph, G*, is the
graph obtained from G by associating a vertex of G* with each face of G and connecting
these vertices of G* with edges that cross each edge of G. There is thus a 1-1 isomor-
phism between the vertices, edges, and faces of G and the faces, edges, and vertices of G*,
respectively. A proper g coloring of the faces of G* is a coloring of these faces with g col-
ors subject to the constraint that no two faces that are adjacent across the same edge have
the same color. The (usual, unweighted) chromatic polynomial P (G, q) satisfies a duality
property, namely that P(G, g) counts not just the proper g colorings of the vertices of G,
but also, and equivalently, the proper g colorings of the faces of G*. By the same duality
property, for a planar graph G, our weighted chromatic polynomial Ph(G, g, w) describes
not just the weighted proper g colorings of the vertices of G but also, and equivalently, the
weighted proper g colorings of the faces of G*.

3 Calculations of Ph(G, q, w) for Some Families of Graphs

In this section we give some illustrative explicit calculations of Ph(G, g, w) for various
families of graphs. Although we generally consider connected graphs, we note that for the
graph N, consisting of n vertices with no edges,

Z(Nu, g, v, w) = Ph(N,, g, w) = (q — 1 +w)". 3.1)

We recall that a tree graph is defined as a connected graph with no circuits. In the following
text and in Appendix B we present results for the weighted chromatic polynomials of n-
vertex tree graphs with n up to 6.

3.1 Line Graph L,
The line graph L, is the graph consisting of n vertices with each vertex connected to the next

one by one edge. One may picture this graph as forming a line, whence the name. For n > 2,
the chromatic number is x (L,) = 2. In [2] we gave a general formula for Z(L,, ¢, v, w),

and the special case v = —1 determines Ph(L,, g, w). Let us define
_(g+tv—1 w
Tz10= ( g—1 w(v+1)) (3.2)
1 0
Hy o= <0 w) 3.3)

—1
= <q 1 ) (3.4)
1
5 = (1) (3.5)

Z(Ly,q,v,w) =uj Hyo(Tz10)" 'si (3.6)

and

Then
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and Ph(L,,q,w)=Z(L,,q,—1,w). Since e(L,) =n — 1, we can apply (2.32) to deduce
that

ap, n-1=1+nw—2). 3.7

From our general formula (3.6), evaluated at v = —1 to obtain Ph(L,,q,w), we can
derive some other corollaries concerning coefficients of Ph(L,, g, w). The maximal degree
of Ph(L,,q,w) in w is

n+1
deg,, (Ph(L,,q,w)) = [ > ] (3.8)
where here [v] denotes the largest integer less than or equal to v € R. This contrasts with
the fact that the highest power of w in Z(L,, ¢, v, w) for v ## —1 is n. The reason for this is
that spin configurations that would yield terms of degrees less than or equal to n and greater
than the maximum in (3.8) are forbidden by the proper g-coloring constraint. If » is odd, say
n =2m + 1, the coefficient of the term in Ph(Ly,,+1, g, w) of highest degree in w, namely
the coefficient of the term w"+D/2 = y"+! is

ﬁLz,,,JrlJn«H = (q - l)m~ (39)

If n is even, say n = 2m, the coefficient of the term in Ph(L,,, g, w) of highest degree in
w, namely the coefficient of the term w™/? = w™, is

Bropw.m =(q — D" ((m + 1)g — 2m). (3.10)

The coefficient of the w® term in Ph(L,, q,w)is

Br.o=(q—D(g—-2"". (G.11)

We proceed to give some explicit results for Ph(L,, g, w) for various values of n. The
case L; = N, is already covered by (3.1). For the next few cases we list the explicit polyno-
mials below, both in factored form and in the form of (2.30):

Ph(L\,q,w)=q —1+w (3.12)
Ph(Ly,q,w) = (¢ — D[g + 2w — 1)]
=q>— (3 —2w)g +2(1 —w) (3.13)

Ph(L3,q,w) = (¢ — D[q* + Bw —4)g + (w — D(w — 4)]
=¢>—(5-3wg’+ W —8w+8qg—(w—Dw—4) (3.14)

and

Ph(Ls.q,w) = (¢ = D)(g +w —2)[¢* + Gw —4)g —4(w — 1]
=q* — (7 —4w)q® +3(w? — 6w + 6)g” — (Tw* — 26w +20)q
+4w — 1) (w —2). (3.15)

Results for tree graphs with n =5 and n = 6 vertices are given in Appendix B.
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3.2 Star Graphs S,

A star graph S, consists of one central vertex with degree n — 1 connected by edges with
n — 1 outer vertices, each of which has degree 1. For n > 2, the chromatic number is
x (S,) = 2. We have derived the following general formula for Z(S,, ¢, v, w):

n—1

Z(Si g v w) =) (" ; l>v-”<c7 +w @G+ w)" (3.16)

j=0

where g was given in (2.23). Evaluating this for v = —1 yields PAh(S,, ¢, w). The term in
Ph(S,, g, w) of maximal degree in w corresponds to a configuration in which all of the outer
vertices are assigned the color 1 and the central vertex of the star graph is assigned any of
the other ¢ — 1 colors. For n > 3 where the star graphs are nondegenerate, this term is thus
(¢ — Dw"™', so that, in particular,

deg,, (Ph(S,, g, w)) =n— 1. (3.17)

(The graph S, is degenerate in the sense that it has no central vertex but instead coincides
with L,.) The graph S; is nondegenerate, and coincides with L;. For n = 2, the term in
Ph(S,, g, w) of maximal degree in w, namely the coefficient of the term w, is 2(g — 1).
For n > 3, the coefficient of the term in Ph(S,, g, w) of maximal degree in w, namely the
coefficient of the term w"~', is (¢ — 1). This is easily understood since it corresponds to
the assignment of the color 1 to each of the n — 1 outer vertices of the star graph S,,, which
allows any of the remaining (¢ — 1) colors to be assigned to the central vertex of this graph.
Because the number of edges of the star graph is e(S,) =n — 1, it follows that

s, n—1 = 1 +n(w - 2) (318)

This coefficient is equal to ay, ,,—.
As an explicit example, for the graph S, we calculate

Ph(Ss.q, w) = (g — D[q* +2Qw — 3)¢*> + BGw’ — 14w + 12)g
+ (w— D(w? = 5w +38)]
=g* — (71— 4w)g®> +3(w? — 6w + 6)g> — (—w* + 9w? — 27w +20)¢q
+ (1 —w)(w? — 5w+ 8). (3.19)
Results for S, with n =35 and n = 6 are given in Appendix B.

3.3 Distinguishing Between Some Chromatically Equivalent Graphs

Using the results given in the text and Appendix B for tree graphs with up to six vertices, we
now analyze the differences between the weighted chromatic polynomials for tree graphs
that are chromatically equivalent. There are two tree graphs with n = 4 vertices, namely, L4
and S4. The correspondences with the carbon atom backbones of alkanes of these and other
tree graphs considered here are given in the online version of this paper [16]. From (3.15)
and (3.19) we find

Ph(Ss.q, w) — Ph(Ly, ¢, w) = (¢ — Dw(w — 1)2. (3.20)
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Ls Y5 Ss

Fig.1 Tree graphs withn =5

There are three tree graphs with n = 5 vertices, as shown in Fig. 1, namely (i) the line
graph Ls, (ii) a graph that we denote Ys, which is obtained by starting with the star S4 and
elongating one of the edges by the addition of another vertex and edge, and (iii) the star
graph S5. We order this list in terms of graphs of increasing maximal vertex degree A; one
has A =2, 3, 4 for Ls, Ys, and Ss, respectively. From (B.1), (B.3), and (B.2), we calculate

Ph(Ss,q,w) — Ph(Ls, g, w) = (g — Dw(w — 1)’Gg + w — 5) (3.21)
Ph(Ss,q,w) — Ph(Ys, g, w) = (g — Dw(w — 1)’ Qq + w — 3) (3.22)

and thus
Ph(Ys.q,w) — Ph(Ls,q, w) = (g — 1)(g — Dw(w — 1). (3.23)

For these graphs, one observes that the differences between chromatically equivalent graphs
have a double zero at w = 1. We find that this is also true of the differences between
weighted chromatic polynomials of tree graphs with n = 6 vertices, as discussed in Ap-
pendix B.

3.4 Complete Graphs K,

The complete graph K, is the graph with n vertices such that each vertex is connected
to every other vertex by one edge. The chromatic number is thus x(K,) = n. One has
e(K,) = ('21) The simplest two cases coincide with previously discussed graphs, namely
the single vertex, K| = L, for which we gave Ph(L,, g, w) in (3.12), and the n = 2 case,
for which K, = L, and Ph(L,, q, w) was given in (3.13). For general n > 2 we obtain the
following theorem:

n—1

Ph(Ky,q, w) = [H(q - j)} (g +n(w—1)). (3.24)

j=1

Proof To prove this, we begin by observing that because of the proper g-coloring condition,
Ph(K,, g, w) vanishes for all of the integer values ¢ =1, ...,n — 1 and hence must contain
the factor ]_[']’;i (g — j). The proper g-coloring condition also means that only one vertex at
most can be assigned the color 1; hence the term in Ph(K,, g, w) of highest degree in the
variable w has degree 1. Since the maximal degree of Ph(G, g, w) in the variable g is n(G),
it must be of the form

n—1
{]_[(q - j)} (aq + bw + ). (3.25)

j=1
From (2.26), it follows that @ = 1. From (1.1) we have

n—1

Ph(K,,q,1)=P(Kp.q) =] [(a = /) (3.26)

=0
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which implies that b = —c, so the last factor in (3.25) is (¢ + b(w — 1)). From (1.2) we have
Ph(K,,q.0)=P(K,.q — 1) =] [ — /). (3.27)
j=1

which implies that b = n, so that the additional factor is (¢ + n(w — 1)). This proves the
result (3.24). a

A corollary of the theorem of (3.24) is that
deg,, (Ph(K,,q, w)) =1 (3.28)

and, further, for n > 2, the term in Ph(K,, g, w) of maximal degree in w has coefficient

n—1

B =n]]@—-. (3.29)
Jj=1

3.5 Wheel Graphs Wh,

The wheel graph Wh, is the graph obtained by joining one central vertex to the n — 1 vertices
of the circuit graph C,_;. (This is the “join” of K; with C,_;.) The central vertex can be
regarded as forming the axle of the wheel, while the n — 1 vertices of the C,_; and their
edges form the outer rim of the wheel. This is well-defined for n > 3, and in this range the
chromatic number is x (Wh,) = 3 if n is odd and x (Wh,) =4 if n is even. The graph Wh;
involves one double edge, while the Wh, graphs with n > 4 have only single edges. The
first nondegenerate case is Why, which is the same graph as K4. We have given the general
structure of Z(Wh, 11, g, v, w) in [2], and this determines the structure of Ph(Wh,, 1, q, w).
Reductions for w =1 and w = 0 are given in [19, 20]. For the nondegenerate cases n > 3,
the number of edges is e(Wh,) = 2(n — 1). We calculate

Ph(Whyy1,.q, w) = (g = D[ )" + Gown, )" ] + (g — D(g =3 (=D)"

+w[lg—2"+(@q-2(=1"], (3.30)

where
At = %[q—3j:\/A_Wh] (3.31)

with
Awn=(q —3)* +4w(g —2). (3.32)

We note that Ay, is equal to A; (given in (4.23)) with g replaced by ¢ — 1, so that the
eigenvalues Ay + are the same as the eigenvalues A, ;, j = 1,2 (given in (4.22)) with g
replaced by ¢ — 1:

Awn+ = (21,0,)g—>q-1 (3.33)

where £ corresponds to j = 1,2, respectively. The A, ¢ ;, j = 1,2, enter in Ph(L,, q, w),
given above, and Ph(C,, g, w), given in (4.21). From these observations, it follows that

Ph(Why 11, g, w) = (¢ — DPh(Cy,q — 1, w) + wP(Cy,q — 1). (3.34)
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This relation makes the reductions of Ph(Wh,,, g, w) for w =1 and w = 0 obvious; using
Ph(G,q,1) = P(G, g), one has

Ph(Whyi1,q,1) = (g — DP(Cy.q — 1) + P(Cyqg — 1)
= P(Whyy1,9) =q[(g = 2)" + (g = 2)(=1)"] (3.35)
and
Ph(Why11,4,0) = (¢ — )P (Cy.q —2)
= P(Whyi1,q —1) = (g = D[(g =3)" + (¢ =3)(=D"]. (3.36)
Further, from the values of x (Wh,,) for odd and even n, it follows that
If n is odd Ph(Wh,,, q, w) contains a factor (g — 1)(g —2). (3.37)
and
If n is even Ph(Wh,,, g, w) contains a factor (¢ — 1)(g —2)(g — 3). (3.38)

Although Whs differs from C; = K3 in having one double edge, (2.16) shows that
Ph(Whs, q, w) = Ph(Cs, q, w), where Ph(Cs,q,w) is given in (4.27). Furthermore, the
graph Why is the same as Ky, so Ph(Why, q, w) = Ph(K4, q, w), where Ph(K,, q, w) was
given above in (3.24).

Since the number of edges in the wheel graph e(Wh, ) = 2n, we can apply (2.32) to
deduce that

iy n =—(Bn+1— 0+ Dw). (3.39)

For the following we again assume that n > 3 so that the Wh,, graph is well-defined. The
highest power of w in Ph(Wh,,, g, w) is

deg,, (Ph(Wh,, q, w)) = ["2:] (3.40)

If n > 6 is even, say n = 2m, then the coefficient of the term in Ph(Wh,,, ¢, w) of maximal
degree, namely the coefficient of the term w1 s

By m—1 = 2m —1)(g — 1)(g = 2)" "' (g = 3). (3.41)

If n is odd, say n = 2m + 1, then the coefficient of the term in Ph(Wh,, g, w) of maximal
degree, namely the coefficient of the term w™, is

Bwhyi1.m =2(q — (g —2)". (3.42)
As an illustration, we display Ph(Whs, g, w) below:
Ph(Whs,q, w) = (g — (g —2)[¢° =52 — w)q’
+ Qw? — 29w +34)g — (w — (4w — 39)]
=q° — (13 = 5w)g* +2(w* — 22w + 33)¢> — (10w* — 140w + 161)g>
+ (16w* — 187w + 185)g — 2(w — 1) (4w — 39). (3.43)
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4 Ph(G, q, w) for Lattice Strip Graphs with Periodic Longitudinal Boundary
Conditions

4.1 General Structure

In [1, 2] we have given a general structural formula for Z(G,, L, x m, BC, q, v, w) on strip
graphs G, of width L, vertices and length L., with cyclic (cyc.) or Mobius (Mb) boundary
conditions (BC’s). For cyclic strips the special case of this structural formula is

Ly npp(Ly,d)
Ph(Gy, Ly x m,cyc.,g,w) =Y & 3" [Ag, 1,a.i(q, w)]", (4.1)
d=0 j=1

where m = L, for strips of the square and triangular lattices and m = L, /2 for strips of the
honeycomb lattice. The coefficients ¢@ are given by

s _ N~y (24— -
cHZZ(—l)J( j )(q—l)‘ i, (4.2)
j=0

The first few of these coefficients are ¢© =1, ¢V =g — 2, ¢ = ¢? — 5¢ + 5, etc. For
Mobius strips, there is a switching of certain é@°s as specified in general in [2], using
the same methods that we employed in [21], as specified by (2.30)—(2.32) and the v = —1
special case of (2.33) of [2].

The numbers nz;(L,,d) of A’s corresponding to each ¢ in the general Potts model
partition function are reduced for the special case v = —1 of interest here. By coloring
combinatoric arguments similar to those used in [21] and [2] we determine the np;,(Ly, d)
as follows. The numbers np;(L,, d) are identically zero ford > L, and

npu(Ly, L)) =1 4.3)
npp(Ly, L, — 1) =2L, (4.4)
npp(Ly +1,0) = npp(Ly, 0) +npp(Ly, 1) (4.5)

and, for1 <d <L, +1,
npp(Ly +1,d) =npy(Ly +1,d = 1) + 2npp(Ly,d) +npp(Ly,d + 1). (4.6)
The npy(L,, d) satisfy the identity

Ly

> & np(Ly. d) = P(Ts,.q) =q(g — D", (4.7)
d=0

Indeed, one method of calculating the np,(L,,d) is to differentiate this equation L,
times. One thereby obtain L, + 1 linear equations in the L, + 1 unknowns np,(L,,d),
d=0,1,..., Ly; solving these equations yields the results given above. We note that

I’lph(Ly,O) :CLy—l +CLy, (4.8)

where C, is the Catalan number,

1 2n
C":n—i-l(n)' 4.9)
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(No confusion should result with the use of C, to mean both Catalan number and the cyclic
graph with n vertices, since the context makes clear which is meant.) We recall that the
partition function of the zero-field Potts model on cyclic strips of the square lattice (as well
as other lattices) has the structure [21, 22]

Ly nz(Ly,d)
Z(Gy Ly xm,cyc.q,v)=Y ¢ > [hz,.1,4.(q )" (4.10)
d=0 j=l1

where the coefficients c¢® are given by (4.2) with ¢ — g + 1 and

_@d+) (2L,
nz(lyd)= (Ly+d+1)<Ly—d> @10

for 0 <d < L,. For this & = 0 case, the total number of distinct eigenvalues that enter in
(4.10) for a lattice strip, i.e.,

Ly
Nz, =Y nz(Ly,d), (4.12)
d=0
is
2L,
Nz.L, = I for h =0. (4.13)
,

We find an interesting relation connecting the numbers np; (L, d) with the corresponding
numbers nz(L,, d) for the zero-field Potts model, namely, for L, > 2,

npp(Ly,d)=nz(Ly,d)+nz(Ly—1,d). (4.14)

From our determination of the np,(Ly, d), we next calculate the total number

L,
Npnr, = ZnPh(Ly»d)- (4.15)
d=0
We find
v (2L (2 =D wio
iy =\ p L1 ) .

From the relation (4.14) it follows that the total number Npy, L satisfies the relation, for
L,>2,
Nen, =Nz, +Nzp,-1, 4.17)

as is evident in (4.16). We list the np,(L,,d) and Np,, for 1 < L, <8 in Table 1. For
purposes of comparison, we include tables of np (L, d), Np.r,, and nz(Ly,d) for both
h =0and & # 0 (from [2]) in Appendix A.

Let us denote Nz, for h # 0 as Nz, 1, for notational clarity, to distinguish this from
Nz(Ly,d) for h =0. For the Potts model in a nonzero field, we have found [1, 2]

Ly .
Nzn, =Y (L?'> (2]’ ) for h % 0. (4.18)

=0~/

@ Springer



514 S.-C. Chang, R. Shrock

Table 1 Table of numbers npj(Ly, d) and their sums, Npj, Ly for strips of the lattice A (square, triangular,
or honeycomb). Blank entries are zero. See text for further discussion

Ly\d 0 1 2 3 4 5 6 7 8 Neni,
1 2 1 3
2 3 4 1 8
3 7 12 6 1 26
4 19 37 25 8 1 90
5 56 118 95 42 10 1 322
6 174 387 350 189 63 12 1 1176
7 561 1298 1276 791 327 88 14 1 4356
8 1859 4433 4641 3185 1533 517 117 16 1 16302

Concerning the relative sizes of Np 1, Nppr,, Nz 1, and Nz, 1, we have, for L, =1,
Np.1 =Nz 1 =2 < Npj1 = Nz, =3 and the inequality

NPsLy < NZ,Ly < 1\7}>},quv < NZh,L)- for Ly > 2. (419)

For example, this set of four numbers is (4, 6, 8, 11) and (10, 20, 26, 45) for L, =2 and
L, =3, respectively.
For large strip width Ly, Npj, 1, has the same general asymptotic behavior as Nz 1,

Npp,1, ~ const. X L;1/24LV as L, — oo. (4.20)
4.2 Circuit Graphs C,

The circuit graph C,, or equivalently, the 1D lattice with periodic boundary conditions, has
chromatic number x (C,) =2ifnisevenand x (C,) =3ifn > 3isodd. (Thecasen =11isa
single vertex with a loop, for which there is no proper g-coloring, so Ph(C1, g, w) vanishes
identically.) The polynomial Ph(C,, g, w) for the circuit graph C,,, can be obtained from the

calculations of Z(C,, q, v, w) [2, 23] by setting v = —1. Expressed in our present notation,
it is
Ph(Cy, g, w) = (A1,01)" + (A102)" + (g —2)(A1,1)", 4.21)
where
1
Ao = E[q -2+ /A;] (4.22)
where the + sign corresponds to j =1, 2,
Al=(q—2%+4q—Dw (4.23)
and
A =-—1. (4.24)

From the values of x (C,) given above, it follows that, in addition to the general factor of
(g — 1) present for any n, if n is odd, Ph(C,, g, w) contains a factor of (¢ — 2). Since
e(C,) = n, it follows that for n > 3

ac, n—1 =h(w —2). (4.25)
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(For n =2, C, has a double edge, so one uses (2.32) to obtain ac, | = —(3 — 2w).) We
exhibit Ph(C,, g, w) for 2 <n <5 below:

Ph(C3,q,w) = Ph(Lz,q,w) = (q — Dlg +2(w — 1]

=q*— (3 —2w)q +2(1 —w) (4.26)
Ph(C3,q,w) = (¢ — (g —2)[q + 3w — 1]
=¢* =32 - w)q’ + (11 = 9w)g — 6(1 — w) 4.27)

Ph(C4,q,w) = (¢ — D[q” + 4w — 1)g* + Qw* — 16w + 17)g — 2(w — 1)(w — 7)]
=q* —4Q2 — w)g® + 2w? — 10w + 12)¢* — (4w* — 32w + 31)q
+2w —D(w—"7) (4.28)

and

Ph(Cs, g, w) = (¢ — D(g — 2[q” + Sw = 7g* + (5w® — 20w + 17)q
—5w—D(w-3)]
=¢° =52 —w)g* +5w? = Tw + 8)¢> — 10Q2w> — 9w + 8)g>
+ (25w? — 100w +79)g — 10(w — 1) (w — 3). 4.29)
In the special case of zero-field, h =0, i.e., w =1, X191 =¢q — 1 while A; o, becomes
equal to Ay ;. Thus, a “transmigration” process occurs in which one of the A’s associated
with the coefficient ¢ of degree d = 0 becomes equal to, and hence can be grouped with,

a ) associated with a coefficient ¢ with a different degree d, here d = 1. Hence, one has
the reduction

Ph(Cy,q,1) = P(Cp.q) =(q — 1" + (g — D(=D". (4.30)

Forw =0, A; 01 =g —2while 1, 9, =0, so that Ph(C,, g, 0) = Ph(C,, g — 1, 1), in agree-
ment with the general relation (1.2).

As an application of our result (2.18) above, it follows that Ph(C,, g, w) contains the
factor (¢ — 1). We note some additional factorization properties and special values of
Ph(C,, q, w):

If n is odd, then Ph(C,, g, w) contains the factor (g — 2). 4.31)

For the g =2 case,
Ph(C,, 2, w) =[14 (=1)"]w"?. (4.32)

The highest power of w in Ph(C,, g, w) is

deg, (Ph(C,, g, w)) = [g] 4.33)

where here [v] denotes the integral part of v. This contrasts with the fact that the highest
power of w in Z(C,, q, v, w) for v # —1 is n. The reason for this is that spin configurations
that would yield terms proportional to w” with n/2 < p <n for even n and (n — 1)/2 <
p <n for odd n are forbidden by the proper g-coloring constraint. For n even, say n = 2m,
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the term in Ph(Cy,, ¢, w) of maximal degree in w, namely w™, has coefficient 2(g — 1)".
For n odd, say n =2m + 1 with m > 1, the term in Ph(Cy,,+1, ¢, w) of maximal degree in
w, namely w"™, has coefficient 2m + 1)(g — 1)" (g — 2).

If and only if w = 1, then Ph(C,, q, 1) = P(C,, g) contains g as a factor. For this zero-
field case w = 1 we also recall that Ph(C,,, q, 1) = P(C,, g) contains g(g — 1) as a factor
and, furthermore, if n > 3 is odd, then Ph(C,, q) also contains (¢ — 2) as a factor.

4.3 L, =2 Cyclic Strip

We denote the cyclic and Mobius strips of the square lattice of width L, =2 and length
L, = m as the ladder graph L,, and the Mobius ladder graph ML,,. For both of these our
general structure determination above gives np,(2,0) =3, np;(2, 1) =4, and np,(2,2) =1,
for a total of Npj» = 8 terms. The weighted coloring polynomial for L, is

2 npy(2.d)
Ph(Lyy. g, w) =) & P}Z (g )", (4.34)
d=0 j=1
where
01 =w(—q) (4.35)
Az,o.j=%[6]2+(w—5)q+7—w:|:\/A_2], j=23 (4.36)
As = g* + 64°w + ¢*w? — 10¢> — 36¢°w — 2qw? + 394>
+72qw 4 w? — 70g — 50w + 49 (4.37)
Az,l.j=—%[q—2i\/A_3], ji=1.2 (4.38)
Ay=¢"+4@g—-Dw-1) (4.39)
Az,l.j=—%[q—4i\/A_4], j=3.4 (4.40)
Ay =q>+4q(w—2) +4(4 —3w) (4.41)
and
hon=1. (4.42)

In (4.40), j =3 and j = 4 apply for the 4 and — sign choices, respectively, and similarly for
the other equations. Results for Z(L,,, g, v, w) are given in [24] and [2]. The weighted chro-
matic polynomial for the L, =2 Mobius strip of the square lattice is obtained by applying
the results of [2].

For w =1, these A’s reduce as follows:

Ao1—1—¢q (4.43)
*ao2 = q*—3q+3 (4.44)
Aoz —>3—g (4.45)
Aig—>1—g (4.46)
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)\.2’1,2 -1 (447)
)\.2,1'3 —> 3 —q (448)
Axra—> 1 (4.49)

Thus, a transmigration process of A’s occurs here, just as it did for the L, = 1 case; (i) one
of the three A’s in the d = 0 subspace reduces to the single A, g> — 3¢ + 3, inthe d =0
subspace for the chromatic polynomial P(L,,, g), while the other two become equal to the
two A’s in the d = 1 subspace of P(L,,, q); (ii) two of the four A’s in the d = 1 subspace
reduce to the two A’s, 3 — ¢ and 1 — ¢, in this subspace for P(L,,, q), while the other two
become equal to the single A = 1, in the d = 2 subspace for P(L,,, g). Hence, we have the
reduction

Ph(Ly.q. ) =(1—q)" +(q> =3¢ +3)"+ (B —¢q)"
+[A =" +2+ B —)"]+&?
=(q*-3¢+3)"+cP[C-g)"+ A —g)"]+c?. (4.50)

5 Some Properties of the Zeros of Ph(G, q, w)
5.1 Zeros of Ph(G, g, w) in g as Functions of w

Here we discuss the zeros of Ph(G, g, w) in g as a function of w for some illustrative
graphs G. Since the maximal degree of Ph(G, ¢, w) in the variable g is n(G), it has this
number of zeros in the variable ¢g. In contrast, as is evident from our explicit calculations
above, the maximal degree of Ph(G, g, w) in the variable w depends on details of G. As is
true for any polynomial, the positions of the zeros of Ph(G, g, w) are continuous functions
of g for fixed w and continuous functions of w for fixed g. As noted above, for any graph G
with at least one edge, Ph(G, g, w) contains the factor (g — 1), so it has a fixed zero atg = 1.
A general statement is that since Ph(G, g, 1) = P(G, q) and Ph(G,q,0) = P(G,q — 1), it
follows that each zero of Ph(G, g, w) shifts horizontally to the right by one unit in the
complex ¢ plane if one replaces w = 1 by w = 0.

One relevant quantity of interest is the maximal real zero of Ph(G, g, w), which we
denote g,,,.(G). This is related to chromatic number of the graph G, x (G), because, by the
definition of g,,,.(G), Ph(G, g, w) is nonzero for real g > g,,,;(G), and it must be positive
since for a given G and w, if ¢ is sufficiently large, then Ph(G, g, w) is positive. Hence, in
addition to x (G), which is fixed for a given G, the quantity g,,,,(G) serves as a w-dependent
measure of the ability to perform a proper vertex coloring of this graph. As a corollary of the
discussion above, a general result is that g,,,.(G) shifts one unit to the right as w decreases
from 1 to 0, as a consequence of (1.1) and (1.2).

Let us consider some simple examples. We have

Gmrz(L1) =1 —w. 5.1

This increases from O to 1 as w decreases from 1 to 0 in the DFCP interval and decreases
from 0 through negative values as w increases above 1 in the FCP interval. For L,

Gmrz(L2) =2(1 — w). 5.2)
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This increases from 0 to 2 as w decreases from 1 to 0 in the DFCP interval and decreases
from O through negative values as w increases from 1 in the FCP interval. This example
also illustrates how the multiplicity of zeros can change as a function of w; for w = 1/2,
Ph(L,, q, 1/2) has two coincident zeros at ¢ = 1.

For L, the situation is more complicated. The expression for Ph(L3, ¢, w) is given in
(3.14). In addition to the fixed zero at g = 1, Ph(L3, g, w) has two other zeros, which occur
at the values

1
Grize = 5[4—3w:i:\/w(5w—4)]. (5.3)

For w =1, these reduce to ¢ = 1 and g = O for the + signs. As w decreases from 1, the zero
at ¢ = 0 increases while the zero at ¢ = 1 decreases. As w decreases through the value w =
4/5, these two zeros meet at ¢ = 4/5, and then move off the real axis as a complex-conjugate
pair as w decreases further in the interval 0 < w < 4/5. The magnitudes of the imaginary
parts of these complex zeros increase to maximal values as w decreases through the value
w = 2/5 and then decrease toward zero. As w decreases through the value w =0, these
zeros return to the real axis, becoming a double zero at ¢ = 2. Thus, for w =1, q13,+ =1,
while for w =0, g3, + = 2. However, g3, + does not increase monotonically from 1 to 2
as w decreases from 1 to 0; instead, it actually decreases from 1 to 4/5 as w decreases from
1 to 4/5, while g3, _ increases from O to 4/5. As w decreases below 4/5, g3, + form a
pair of complex-conjugate roots, as noted. Hence, for w in the DFCP interval, the fixed zero
at g = 11is g, (L3). As w passes through the value w = 0, g,,;(L3) jumps discontinuously
from the fixed zero at ¢ =1 to g3, + = qr3;— = 2.

As w increases above 1 in the FCP interval, g3, + decreases monotonically from 1, so
that g,,,, (L) remains the fixed zero at g = 1. This example shows that although individual
zeros of Ph(G, g, w) in the g plane are continuous functions of w, the maximal real zero
qrmz(G) of Ph(G, g, w) is a discontinuous function of w. The reason for the discontinuity
in ¢,,,;(G) is the confluence of two complex-conjugate roots that come together and pinch
the real axis (at ¢ = 2) as w decreases through w = 0, abruptly producing a new maximal
real root (of multiplicity 2). Thus,

lim gy (L3) =1, (5.4)
w—0t+

but g, (L3) =2 for w =0.

In the FCP interval w > 1, the fixed zero at ¢ = 1 remains as g, ;(L3), since gr3; +
decreases below 1, while g3, _ decreases below 0. Indeed, the zero g3, + has a local
maximum at w = 1 and decreases monotonically as w increases above 1; g3, 1 passes
through 0 as w increases through the value w = 4 and behaves asymptotically like g3, 4+ ~
—(1/2)(3 — V5)w as w — co. The zero qL3;.— also decreases monotonically from its value
of 0 at w = 1 through negative values as w increases above 1, and has the asymptotic be-
havior gqr3, - ~ —(1/2)(3 + V3w as w — .

As w decreases through negative values, the double zero g3, 1 at ¢ = 2 splits apart again.
The zero g3, + increases monotonically as w decreases through negative values, and grows
asymptotically as g3, + ~ (1/2)(3 — V5)|w| as w — —oo. The other zero, q13;.— 1S anon-
monotonic function of w; it first decreases below 2, reaching a minimum of ¢, .3 =9/5
for w = —1/5 and then increases, passing through the value g; .3 — =2 again as w decreases
through the value w = —1, and increasing asymptotically as g3, - ~ (1/2)(3 4+ +/3)|w]| as
w — —00. As these examples show, there is somewhat complicated behavior of the individ-
ual zeros as a function of w for even a very simple graph such as L3, and this behavior is,
understandably, more complicated for larger graphs.
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In this case and others one can avoid the discontinuous behavior of g,,.(G) by restricting
w to the range w > 0. Doing this, we have examples from these simple graphs that exhibit a
continuous increase of g,,,;(G) as w decreases from 1 to 0 and an example in which g,,,, is
fixed, independent of w in this DFCP interval 0 < w < 1. For w in the FCP interval w > 1
we find cases where ¢,,,.(G) decreases monotonically as w increases and also a case where
qrmz(G) is fixed at 1.

Among the Ph(C,, g, w) polynomials, the case n = 2 is the same as Ph(L,, ¢, w) and
for n = 3, there are two w-independent zeros, at ¢ = 1 and ¢ = 2, while the third occurs at
q =3(1 — w). As w decreases from 1 to 0, this third zero increases from O to 3. In the FCP
range w > 1, this zero decreases from 0 at w = 1 to —oo as w — 00.

A particularly simple case to discuss is that of complete graphs K,. For these, as is
evident from (3.24), Ph(K,,q,w) has zerosing atg=1,2,...,n—1,and g =n(1 — w).

The zeros of Ph(G, ¢, w) in g as a function of w for fixed w satisfy certain boundedness
properties [25]. For w = 1 and w = 0, these specialize to the bound for a (usual, unweighted)
chromatic polynomial, namely that if ¢ is a zero of P(G, q), then |q| < a4 (G), where
A (G) denotes the maximal degree of the vertices in G and a =~ 7.964 from [25] (im-
proved in [26]). However, these zeros of Ph(G, g, w) in g are unbounded as |w| — oo. This
is already evident in the simplest case of a single vertex, for which Ph(Ly,q, w) =q—1+w,
with a zero at ¢ = 1 — w with a magnitude that goes to infinity as |w| — co. Some insight
into the lack of boundedness of the zeros of Ph(G, g, w) for arbitrary w can be gained by ex-
amining the behavior of the factor ]_[fi(f;)(q —14+w"%)) in Ph(G, ¢, w). As w — o0, each
of these factors goes to infinity also unless g behaves like 1 — w" @D, going to —oo. In prin-
ciple, one might imagine a cancellation occurring between different ]_[fg’ g—1+ w"(Gz/'))
factors for different spanning subgraphs G’ C G, via different signs of the (—1)°@" factor
in Ph(G, g, w), nevertheless, this makes is understandable why, in the absence of such can-
cellation, some zero(s) of Ph(G, g, w) have magnitudes |g| — oo as |w| — oco. Note that
this behavior cannot simply be attributed to the frustration that occurs when w gets large
and positive, because it is also true in the unphysical region for w negative.

Although the positions of the zeros of Ph(G, g, w) in g are continuous functions of w
and vice versa, this is not true of the asymptotic locus B. Indeed, we shall show below that
for the n — oo limit of the circuit graph C,, as w decreases below one, regardless of how
small the magnitude of 1 — w is, the part of B, that crosses the real g axis on the left jumps
discontinuously to the right by one unit, so that this crossing occurs at ¢ = 1 instead of at
q =0. (In contrast, the right-hand part of 5, increases above 2 continuously as w decreases
below 1.)

5.2 Zeros of Ph(G, g, w) in w as Functions of ¢

One may also study the zeros of Ph(G, g, w) in w as a function of g. For graphs G con-
taining at least one edge, Ph(G, 1, w) vanishes identically. We therefore take g # 1, al-
though we shall consider the limit ¢ — 1 below. We again consider some simple exam-

ples. Ph(L,q,w) =0 for w =1 — ¢g. From (3.13), we find that Ph(L,,q,w) = 0 for
w=1—(g/2). From (3.14), it follows that Ph(L3, q, w) =0 at w = w3, +(q), where

1
Wr3e = 5[5 —-3q£/(g-1DGg -9 ] (5.5

These roots are real for ¢ <1and g >9/5, and form a complex-conjugate pair for
1 < g <9/5.For g =0, these roots are 1 and 4. As g increases from O to 1, w3, ; decreases
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monotonically from 4 to 1, while wys, _ first decreases, reaching a minimum of 4/5 at
q =4/5, and then increases to 1. Thus, at g = 1, the roots coalesce to form a double root. As
q increases above 1, they split apart to form a complex-conjugate pair, with the magnitude
of the imaginary part reaching a maximum at ¢ = 7/5, for which w3, + = (1/5)2 £ V50).
As ¢ increases further, these roots move back to the real axis, coming together again at
w = —1/5 as q increases through the value 9/5. As ¢q increases further, w3, _ decreases
monotonically, while w3, 4 first increases to the value 0 at ¢ = 2 and then decreases. For
the complete graph K,,, Ph(K,, g, w) has a single zero in w at

wine =1—- 2. (5.6)
n
The zeros of Ph(G,q,w) in w as a function of ¢ are not, in general, bounded, even
for finite values of ¢g. This is a consequence of the fact that the coefficient of the term in
Ph(G, q, w) of highest power of w may vanish as a function of ¢, in contrast to the fact
that the coefficient of the term in Ph(G, g, w) of highest power in g is a w-independent
constant (namely, 1) and hence never vanishes. Generically, in the absence of cancellations,
a root of an algebraic equation diverges when the coefficient of the term of highest degree
vanishes. This is evident in the quadratic equation aw? + bw + ¢ = 0, where a, b, and c are
functions of ¢ with no common factors. Let us denote the set of values of ¢ where a(g) =0
as {go}. One of the roots of this equation, w = (2a) ™' (—b & +/b% — 4ac), diverges when ¢
approaches one of the values in the set {go}, since a — 0 in this limit. A similar comment
applies for algebraic equations of higher degree. Given that we have restricted ourselves,
with no loss of generality, to connected graphs G, these all contain at least one edge, except
for the case of a single vertex. Hence, for these graphs with at least one edge, Ph(G, g, w)
contains the factor (¢ — 1). It is thus convenient to discuss the reduced coefficients BG, j
defined in (2.36). A zero of Ph(G, g, w) in w has a magnitude that generically diverges
when the coefficient of the term of highest degree in w, namely the coefficient B¢ 4, G)»
vanishes. This type of divergence can be absent if coefficient(s) BG,_,» with j < d,,(G) also
vanish sufficiently rapidly as ¢ approaches the value where B¢ 4, () vanishes.
We give some simple examples of the divergences in zeros of Ph(G, g, w) in w as a func-
tion of ¢g. For the line graph L4, using our result in (3.15) above, we find that Ph(L4, g, w)
has zeros in w at

Wraz1 =2—¢q (5.7
and
. (g=2
Wr4z,2 = (q _4)- (5.8)

As g — (4/3) — 0%, w4, » — Foo. This divergence is a consequence of the fact that (i) the
term in Ph(L4, g, w) of highest power in w, namely (g — 1)(3¢ — 4)w?, has a reduced
coefficient .2 = 3q — 4 that vanishes at ¢ = 4/3 and (ii) the terms of lower degree in w
do not vanish at ¢ = 4/3, as is clear from their reduced coefficients A, w1 =2(q—=2)(2q -3)
and B,0=(q —2)°.

Another example is provided by the line graph Le. From (B.4) it follows that
Ph(Lg, q, w) has zeros in w at

(=27
Wrez,1 = _m 5.9)
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and

(g —2)[5—4q £+ /84* — 16g +9]
4(qg — 1) '

where j =2 and j = 3 correspond to the + and — signs, respectively. As g — (3/2) — 0%,
Wies.1(q) = Foo, and as ¢ — 1 — 0%, wyg, » — Foo while wye, 3 — 1. The divergences
in wre;1 and wye,» are consequences of the fact that (i) the term of highest power in w
in Ph(Ls, g, w), namely 2(qg — 1)>(2¢ — 3)w?, has a reduced coefficient BL(,,S =2(q —
1)(2g — 3) that vanishes at ¢ = 1 and ¢ = 3/2 and (ii) the terms of subleading degree in
w do not vanish at either of these values of ¢, as is clear from their reduced coefficients
Broz = (q — 2)(10¢% — 28q + 19), Brs1 =2(3¢ — 4)(g —2), and B0 = (g — 2)°.

For the Y5 graph, using our result in (B.2) for Ph(Ys, g, w), we find that this polynomial
has zeros in w at

Wrez,j = Jj=2,3, (5.10)

Wysz;1 =2—¢q (.11

and

[—4¢> +13g — 114 (g — 1)/8¢% —28¢ +25]

22q —3)

Wys;,j = j=2,3, (5.12)
where j =2 and j = 3 correspond to the + and — signs, respectively. As g — (3/2) — 0%,
Wys; 3 — F0o, while wys, » — 1/4. These divergences can easily be understood from the
structure of the reduced coefficients BYS, ; for the various powers of w in Ph(Ys, g, w), as
discussed in general above.

As a last example, for the Hg graph, using our calculation in (B.7), we find that
Ph(Hg, q, w) has a double zero at

WHe,1 :2—61 (513)

and two other zeros at

[—2¢% 4+ 6g — 54 (¢ — 1)4/3¢% — 10g + 9]

q—2

Wye,j = =2,3, (5.14)
where j = 2,3 for the + signs, respectively, as before. As ¢ — 2 — 0%, wyg, 3 — Foo,
while wyg, 2 — 0.

As these examples show, the zeros of Ph(G, g, w) in w can be unbounded as functions
of g. The divergences in these zeros that we have found occur at values of ¢ > 1 (including
the integers ¢ = 1 and g = 2). It is of interest to determine a region in the g plane for which
the zeros of Ph(G, g, w) in w are bounded, and we are studying this problem. Our results
show that such a region would have to exclude the real interval 1 <g <?2.

6 Quantities Defined in the Limit n(G) — oo
6.1 ® Function

From the chromatic polynomial P(G, q) = Ph(G, g, 1), one defines a configurational de-
generacy, which is the ground-state degeneracy, when viewing P (G, q) as the partition
function of the zero-temperature Potts antiferromagnet,

W((G).q) = lim P(G.q)"". (6.1)

@ Springer



522 S.-C. Chang, R. Shrock

where n = n(G) and we use the symbol {G} to denote the limit n — oo for a given family
of graphs (and the symbol W should not be confused with the variable w). In the present
context, this n — oo limit corresponds to the limit of infinite length for a strip graph of fixed
width and some prescribed boundary conditions. The associated configurational entropy per
vertex (ground-state entropy per site of the Potts antiferromagnet) for {G} is

S=kylnW. 6.2)

The third law of thermodynamics states that the entropy per site S goes to zero as the temper-
ature goes to zero. However, there are a number of exceptions to this law. Elementary lower
bounds on W are W > (¢ — 1)!/? on a bipartite graph and W > (g — 2)!/3 on a tripartite
graph. Hence W > 1, and S > 0 for (i) ¢ > 1 and (ii) ¢ > 2 on the n — oo limit of a (i) bi-
partite and (ii) tripartite graph, respectively. In each of these cases, the third law is violated.
A well-known violation in nature is water ice, which exhibits ground-state entropy [27].

In the present case with a nonzero external magnetic field H # 0, we define an analogous
quantity

®({G),q,w)= lim Ph(G,q,w)"". (6.3)
n(G)—oo

As before (cf. (1.9) of [28] and (2.8) of [29]), one must take account of a noncommutativity
of limits, namely the fact that for certain special values of ¢, denoted {¢,}, the limits n — oo
and ¢ — g, do not commute:

lim qlij; Ph(G, g, w)"/" + qlin[} lim Ph(G.q. w)/", (6.4)
Because of these noncommutativities, the formal definition (6.3) is, in general, insufficient
to define @ at these special points; it is necessary to specify the order of the limits that one
uses in (6.4). This noncommutativity also affects the resultant accumulation sets 3. We have
discussed this in detail before in the case of the chromatic polynomial [28] and zero-field
Potts model partition function [29]. Modulo this subtlety, it follows from (1.1) and (1.2) that

®({G}.q. 1) =W({G}.9) (6.5)

and

®({G}q.00=W({G}.g — D). (6.6)
6.2 Accumulation Locus B for Strip Graphs and ® Function

For a n-vertex graph G in a recursive family of graphs such as strip graphs, as n — oo,
a subset of the zeros of Ph(G, g, w) merge to form a locus B. For fixed w, this is a locus
B, in the g plane, while for fixed g, it is a locus B,, in the w plane. We define a domi-
nant (maximal) eigenvalue 1,,,, as an eigenvalue whose magnitude |A,,,,| is larger than or
equal to the magnitudes of all other eigenvalues. From (2.30), it follows that the zeros of
Ph(G, q, w) can occur either as an isolated zero of a single dominant eigenvalue or where
two dominant eigenvalues are equal in magnitude. The continuous accumulation set of the
zeros of Ph(G, ¢, w) in a given variable, denoted 1, is given generically by the solution set
of the condition of equality of dominant eigenvalues. For real w, the coefficients of the terms
in Ph(G, g, w) are also real (actually integers, although this is not used here), and conse-
quently, the set of zeros of P(G, g, w) in the complex g plane is invariant under complex
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conjugation g — g*. A fortiori, the locus B, is also invariant under this complex conjuga-
tion. By the same logic, for real g, the set of zeros of Ph(G, g, w) in the complex w plane
is invariant under the complex conjugation w — w*, and so is their accumulation set 3,,.
Because the A’s are the same for lattice strip graphs with cyclic and Mobius boundary con-
ditions, it follows that in the L, — oo limit, the loci B are also the same. With regard to the
zeros of Ph(G, g, w) in w for fixed ¢, we note that these are to be contrasted with the zeros
of the Potts model partition function Z(G, ¢, v, w) in w for fixed ¢ and v # —1, which have
studied previously in many works.
For the strip graphs of width L, considered here,

CD({G}’ q, w) = ()‘max)l/L'v' (67)

As one moves across a locus B, there is thus, generically, a switching of dominant eigenval-
ues and an associated non-analyticity in ®. From (1.2) we have

©({G}.q.0)=2({G}.qg — 1. 1). (6.8)

7 ® Function and Accumulation Locus B for Line Graphs
7.1 B,

Only Ai1o,j, j = 1,2 contribute to Ph(L,,q,w). For w =1 we encounter the noncom-
mutativity of (6.4). If we first set w = 1 and then vary n, we can use the fact that
Ph(L,,q,1) = P(L,,q) = q(g — 1)"7!, so that aside from the single zero at ¢ = 0, the
zeros accumulate at ¢ = 1 and B, degenerates to this single point. If we choose the other
order of limits, first taking n — oo and then w — 1, then the locus B, is the solution to the
equation |Aj o.1| = |A1,02]. This equation is always satisfied if ¢ = 2, so this point is on B,,
which forms a complex-conjugate arc with endpoints where A; = 0, where A; was given in
(4.23). As w — 1, these endpoints come together at g = 0.

Forw =0, Ph(L,,q,0) = P(L,,q—1) = (g —1)(g—2)""", so the locus B, degenerates
to the single point at ¢ = 2. We proceed to consider w # 0, 1. Here, the equation |A; o ;| =
|A1,0,2| determines the locus B,. The DFCP interval 0 < w < 1 is of particular interest, since
for this interval the weighted chromatic polynomial Ph(G, ¢, w) interpolates between two
chromatic polynomials; Ph(G, q,1) = P(G, q) and Ph(G,q,0) = P(G,q — 1). We thus
study B, for this interval first. In this DFCP interval, B forms a (self-conjugate) arc passing
through ¢ = 2 and ending at the points where A; =0, namely ¢, ;, j =1, 2,

gej=2[l—wxtyww-1], j=12 (7.1)

where j = 1, 2 correspond to the = signs, respectively. Here the square root in (7.1) is pure
imaginary, so g.,; = ¢, , form a complex-conjugate pair. As w decreases below 1, these arc
endpoints move away from the real axis near g = 0. They reach their maximal distance from
the real axis at w = 1/2, where g, ; =1 %, and as w decreases from 1/2 to 0, these arc
endpoints come back toward this axis, finally reaching it at ¢ = 2.

In the FCP interval w > 1, the locus B, is a line segment whose right and left ends occur
at ¢..1 and g, », respectively. As w increases above w = 1, the line segment extends outward
from the point ¢ = 0. Some illustrative sets of values for these endpoints are (i) for w = 1.2,
ge1 > 0.580 and g, » >~ —1.380, (ii) for w =2, g,; ~0.828 and g, » ~~ —4.828, and (iii) for
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w =10, g,,; =0.974 and ¢, » = —36.974. As w — oo, the right end of this line segment
occurs asymptotically at

1 1 1
e1=1—-——-——-0|—=), 7.2
el 4w 8w? <w3> 72)
while the left end occurs at approximately
1 1
Gep=—4w+3+—+0(— ). (7.3)
4w w?

As discussed above, the ranges of w for these weighted coloring problems are 0 < w < 1
and w > 1, respectively. We may also consider an extension of this range of values of w in
which w becomes negative, although negative values of w do not correspond to a weighted
graph coloring problem. As w decreases from 0O through negative values, B, forms a line
segment that extends outward from the point ¢ = 2, with left and right ends at ¢, ; and
.., respectively. As w — —oo, the left end approaches g = 1 from above, as g, ; >~ 1 +
@w))~" + O(w™?), while the right end goes to infinity, as g., =~ 4|w| + 3 — 4|w|)~".
This locus B, does not separate the complex g into any separate regions. The dominant A is
A1,0.1 and, denoting the formal limit of this family of line graphs as lim, .o L, = {L}, the
resultant ¢ function is

1
S(L}, g, w) =201 = 5[‘1 —2+(q -2 +4(q—Dw]. (7.4)

Here it is understood that one takes account of the branch cut associated with the branch
point singularity in the square root, so that at large negative g, |*;.1| ~ —¢q. For w = 1, this
has the Taylor series expansion

_ _ _ _ 2
1+ [(g—Dw—-D] (g 1)(;1) D]
q q-

_ _ 3
LA -Dw-DP

qS

(w—1%) asw— 1 (7.5)

For w >~ 0, the Taylor series expansion for ®({L}, ¢, w) is
(L} qw)=(@—-[1+z-2"+22 - 0("] asw—0, (7.6)
where here we use the compact notation

= (g —Dw
(q—27"

As |w| — oo, ®({L}, g, w) behaves asymptotically as

q—2 1
qD({L}’q’ U)) V(q_l)w[l—i_ﬁ—i_o(E)] as|w|—>oo. (78)

As g — 0o, ®({L}, g, w) behaves asymptotically as

(7.7)

_ _ 2
UL g w) ~q—2+w— 2@ =D 2w +0(l

= ;) asqg —>oo. (7.9)
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Fig.2 Plotof ®({L},q,w) asa
function of w for the following
values of ¢, from bottom to top:
g =(a)2,(b)2.5,(c)3,(d)3.5,
(e)4

In Fig. 2 we show plots of ®({L}, g, w) as a function of w for some representative
values of g. As is evident from Fig. 2, for g > 1, ®({L}, ¢, w) is a monotonically increasing
function of w in the DFCP range 0 < w < 1. This reflects the fact that it is easier to carry out
a proper g-coloring of the line graph as the weighting factor w increases from 0 to 1. It is
also easy to understand why ® ({L}, g, w) is, for ¢ > 1, a monotonically increasing function
of w in the FCP interval of real w > 1, with the leading asymptotic form given in (7.8),
®({L},q, w) ~ /(g — Dw. To see this, let us start with finite » and maximize the number
of vertices assigned the color 1, in order to maximize the power of w in ®(L,,, g, w). Since
the graph L, is bipartite, we can start at, say, the left end of the line graph and assign the
corresponding vertex, denoted vertex i = 1 with this color 1. Then the next vertex to the
right, i = 2, cannot be assigned this color, but there are ¢ — 1 possibilities for its color.
The vertices i =3, 5, and so forth for all odd-numbered vertices, are similarly assigned the
color 1. Each of the even-numbered vertices can independently be assigned any of g — 1
colors. Taking into account all of these possible color assignments (or equivalently, spin
configurations, in the statistical mechanics context), it follows that, if n is even, then the
dominant term in ®(L,, g, w) as w — oo for g > 1 is Ph(L,,q, w) = [(g — Dw]"/? and if
n is odd, then this dominant term is Ph(L,,q, w) = (g — 1)"~D/2w@*+D/2_In either case,
for g > 1, as w — oo, if one takes n — oo and calculates ®({L}, g, w), one obtains, as the
leading asymptotic expression, ®({L}, g, w) ~ /(¢ — Dw.

Although negative w is not associated with any coloring problem, we also show in Fig. 2
the extensions of the curves into the negative-w region. The function A, in the square root of
d({L}, g, w) becomes negative, and hence ®({L}, g, w) becomes complex, for w < w,(g),
where

(g-2)
4@q-1’
For example, w,(2) =0, w,(3) = —1/8, and w,(4) = —1/3. We only plot each curve for
w > w,(q). The values at w =0 and w =1 are P({L},0,w) =g —2 and ®P({L}, 1, w) =
qg—1.
In Figs. 3 and 4 we show ®({L}, g, w) as a function of ¢ for the range relevant for col-
oring, namely ¢ > 1, and a set of w values in the DFCP interval 0 < w < 1 and the FCP

w;(q) = (7.10)
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Fig.3 Plotof ®({L},q,w) asa
function of ¢ > 1 for the
following values of w: w =

(a) 0.1, (b) 0.2, (¢) 0.5, (d) 0.8,
(e) 0.9. The plot also shows
Ph({L},q,0) =g —2 and
Ph({L},q,1)=¢q — 1. The
curves for the w values (a)—(e)
are arranged from bottom to top,
to the right of ¢ = 1, between
these lines

Fig.4 Plotof ®({L},q,w) asa
function of ¢ > 1 for the
following values of w in the FCP
interval: w = (a) 1.1, (b) 1.5,

(c) 2, (d) 3. The curves for the w
values (a)—(d) are arranged from
bottom to top
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interval w > 1, respectively. One sees that for fixed ¢ > 1, ®({L}, ¢, w) is a monotoni-
cally increasing function of w for w > 0. Given its definition as the 1/n’thd power of the
weighted chromatic polynomial Ph(G, g, w) as n — oo and the fact that Ph(G, g, w) pro-
vides a measure of the ease of carrying out a weighted proper g-coloring of the graph G, it
follows that where ® ({G}, ¢, w) is meaningful for such colorings, it is non-negative. Hence
the continuation of the line that passes through ¢ = 2 to negative values of ® is not relevant

for graph coloring.

These calculations with line graphs show a number of general features of the weighted
chromatic polynomial Ph(G, ¢, w) and the associated limiting function ®(G, ¢, w). They
suggest the following conjectured generalization for weighted colorings of families of strip
graphs G of regular lattices A: in the n — oo limit of G, denoted {G}. Let the chromatic
number of the lattice A be indicated as x (A). For a bipartite lattice such as a line graph L,,, a
circuit graph C, with even n, or a square, cubic, or body-centered cubic lattice, x (Apip.) = 2.
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For a triangular lattice, x (tri) = 3, etc. Assume g > x(A). Then (i) for fixed w > 0,
o ({G}, g, w) is a monotonically increasing function of ¢ and (ii) for fixed ¢, ® ({G}, g, w)
is a monotonically increasing function of w for w > 0. The generalization (i) is understand-
able since ®(G, g, w) is a measure of the number of weighted proper g-coloring of G,
and this should increase if there are more colors, i.e., if g increases. For the DFCP inter-
val 0 < w < 1, the generalization (ii) follows because increasing w in this interval removes
the penalty factor for coloring a vertex with one of the colors and hence clearly makes it
easier to perform a proper g-coloring of the vertices of G. In the FCP interval w > 1, the
generalization (ii) is rendered plausible because for sufficiently large ¢, one can analyze the
dominant terms contributing to ®(G, ¢, w), and these arise from maximizing the number
of vertices that can be assigned the color 1, subject to the proper g-coloring condition, and
then enumerating the possible color assignments for the other vertices. We remark that for
these monotonicity properties, it is important that ¢ > x (G). As an example of how the be-
havior differs when g < x (G), consider the weighted chromatic polynomial of the complete
graph, K,, given in (3.24). Recall that x (K,) = n. Let us take n = 4 for definiteness, so that
Ph(K4,q,w)=(q — 1)(g —2)(q¢ — 3)[¢q + 4(w — 1)]. This is a monotonically increasing
function of g if ¢ > 3, but not for smaller values of g. Moreover, say we keep w arbitrary
but choose the illustrative value ¢ = 5/2, whence Ph(K4,5/2, w) = (3/16)(3 — 8w). This
is not an increasing function of w in the DFCP or FCP intervals.

12 By

One can also study B,, as a function of g. We find that B,, is the semi-infinite real line
segment

By: w<wy(qg) for{L}, (7.11)

where w,(g) was given in (7.10). For the range of ¢ relevant for weighted graph coloring,
namely g > 1, w,(¢g) <0.

8 @ Function and Accumulation Locus B, for Circuit Graphs

Here we discuss the accumulation set B of the zeros of Ph(G, g, w) as n — oo for the
family of circuit graphs, C, (this limit is denoted {C}). The results depend on w, so we
discuss various intervals of w in turn.

81 w=1

We begin by briefly reviewing the results for the case unweighted case w = 1, i.e., for the
chromatic polynomial P(C,, g), given in (4.30). The resultant locus 3, in the limit n — 00
is the unit circle

By lg—1=1 forw=1. (8.1)
This crosses the real axis at the points

qer1 =0, Gerp=2 forw=1. 8.2)

Following our earlier notation [28, 30-32], we denote the maximal point at which B, inter-
sects the real ¢ axis for the n — oo limit of a given family of graphs, {G}, as ¢.({G}). Thus,
here, g, = 2.

@ Springer



528 S.-C. Chang, R. Shrock

Indeed, all of the complex zeros lie exactly on this unit circle [33]. The boundary 5,
separates the ¢ plane into two regions, in which W (g) has different analytic forms. Outside
of the circle |g — 1| = 1, the dominant A is A; o; = g — 1, while inside of this circle, the
dominant A is A;; = —1, so

W@g)=q—1 for|lg—1|>1
[W(g)|=1 for|g—1|<1.

(8.3)

82 O<sw<l

As w decreases below 1 in the interval 0 < w < 1, the boundary B, continues to be a simple
closed curve separating the g plane into two regions. However, there is a discontinuous
change in the form of this boundary. On the left, the point at which the locus B, crosses the
real g axis jumps from g =0 forw =1 to

gora=1 for0<w<1. (3.4)

Associated with this, the left part of the boundary B, changes discontinuously from a section
of a circle to an involuted cusp with its tip at ¢ = 1. (There may also be discrete zero(s) to
the left of ¢ = 1.) Thus, as one moves along the curve forming B, upward from the point
g = 1 where it intersects the real axis in the cusp, this curve moves to the upper left, finally
curving around to go upward, and then over to the right. The behavior of the boundary B3,
on the right side is continuous as w deviates from 1; this part of B, crosses the real axis at

G2 = .= 252 for (G} = (). (8.5)
w41

This point g, increases monotonically from g, = 2 for w = 1 to g, = 3 as w decreases from
1 to 0. We denote as R, the region that includes the real interval ¢ > ¢, and the part of the
complex g plane analytically connected to it, which is the region outside of the closed curve
formed by B,, For w only slightly less than unity, B, has the form of a lima bean, with its
concave part facing left and its convex part facing right. As w decreases through this interval
0 < w < 1, the bulbous parts of 3, on the upper left and lower left disappear, and eventually,
as w decreases toward 0, the locus B, becomes the circular locus (8.1) with g replaced by
g — 1 (in accordance with (1.2)), i.e., unit circle whose center is shifted horizontally by one
unit to the right in the g plane:

B,: lg—2/=1 forw=0. (8.6)

In region Ry,
o({C},q,w)=d({L},q,w) forqg e Ry, 8.7)

where ®({L}, g, w) was given above in (7.4). In region R, forming the interior of the closed
curve B,

|®({C}, g, w)| =1 forq e Rs. (8.8)

Thus, a plot of ®({C}, g, w) as a function of ¢ for w € (0, 1) is similar to the plot of
®({L}, g, w) given in Fig. 3 but with the difference that the curve extends only down to the
value g = g, given in (8.5), where ®({L}, ¢., w) = ®({C}, ¢., w) =1, and for 1 < ¢ <gq,,
o ({C}, g, w) has unit magnitude in region R,, while ®({L}, g, w) continues downward,
reaching zero as ¢ — 1.
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821 w>1

For the range w > 1, the locus B, contains a line segment on the real axis, whose left end
occurs at g, (cf. (7.1)). This is a solution of the condition that A; = 0, where A is the
function in the square root in (4.23). Along this line segment, A; < 0, so that the square
root in (4.22) is pure imaginary; hence, the A, o ; with j = 1,2 are complex conjugates of
each other. They are also larger than |A; ;| = 1 and hence this line segment is on B,. As
one moves to the right along the real axis on this line segment, when one comes to the
intermediate point g;,;, given by
1

G =1——, 8.9
w

the equal magnitudes of ;¢ ;, j = 1, 2 decrease through the value 1, so this is the point at
which this line segment on B; terminates. For the present range w > 1, the point ¢ =0 is
always on this line segment, since

Mojlg=0==-1xivw—-1, j=1,2, (8.10)
and these are dominant over A; ; = —1, since |A1 o ;| =1+ |w — 1| for j =1, 2. In the real
interval

gm <q =1, (8.11)
and in the region of the complex ¢ plane analytically connected with it, A; ; = —1 is domi-

nant. We denote this region as Rj, and
|[®({C},q,w)|=1 forqg e R;. (8.12)

Thus, although the square root in the A; o ; is imaginary for the full interval g.» < g < g1,
this does not affect B, for g > gjy.

At g =1, Ay 0 becomes degenerate with A 1, so B, crosses the real g axis at this point.
The eigenvalue X, o, is dominant in the interval

l<g=<2 (8.13)

and the region of the g plane analytically connected with it. We denote this region as R,,
and obtain

1
®({C),q, w) = 5[q -2-V(@-2?%+4(q—-Dw] forgeR,. (8.14)
At the point
4g=q.=2 (8.15)
X101 = —A102 = ~/w, and both are dominant over A;; = —1, since w > 1. Hence,

B, crosses the real ¢ axis again at this point, and this is the maximal real value of g where
B, crosses the real axis. We denote the real interval g > 2 and the region of the complex g
plane analytically connected with it as region R;. In this region, since A; o ; is dominant,

1
o({C},q, w) = E[q —2+/(g—2?%+4(g—Dw] forgeR,. (8.16)
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Fig. 5 Plotof (a) [A1,0,11, . b
() A1,0,21, and (c) [x1 1| = 1 for rd
Ph(Cy,, g, w) with the illustrative H
value w = 3/2. The values of . [
these magnitudes and the N, F3
corresponding order of the curves ‘ [
from top to bottom are \ L ‘
()a>b>cforg>2; T [ phimag /
(i))b>a > cforqe(l,2), —_ . L

(iii) c > b >a for gjnr < q < 1, e | 7
(v)a=b > ¢ for I -
Ge2 <4 <gint» (V) a > b > ¢ for [T
q <gep.Forw=3/2, L \t\ /
Gint =1/3 and g, o ~ —2.732. [ o
See text for further discussion V4

Thus, for w > 1, the locus B, for the n — oo limit of Ph(C,, g, w) separates the g plane
into three regions.

In Fig. 5 we plot |A10.1l, |A1.02], and |X;;]| =1 as functions of g for the illustrative
value w = 3/2. For this value, g;,y = 1/3 and g.» = —(1 + /3 ) =~ —2.732. As before,
the A of dominant magnitude determines ®({C}, g, w). For ¢ > 2, A} ,; is dominant; for
1 <g <2, X0, is dominant; for 1/3 <g <1, A, is dominant, and for ¢ < g, 2, A1,0,1 1S
again dominant (taking into account the branch cut in the definition of the sign of the square
root). On the interval g,» < g < Gins, |A1,0.1] and |X; ¢ 2| are equal in magnitude and domi-
nant. This plot shows the intersections of the curves (or line) where there is a degeneracy of
dominant A’s at ¢ = 2, ¢ = 1, and along the interval g, » < G-

83 w<0

As w decreases below 0 through the range —1/3 < w < 0, B, forms a closed curve that
crosses the real axis at the fixed point ¢ = g.; = 1 and at the w-dependent point ¢ = g2,
which increases as w becomes more negative. The shape of 3, changes as w becomes more
negative in this interval, becoming a teardrop with its broadly rounded end on the left and
its sharper end on the right. As w decreases through the value w = —1/3, a line segment
appears, and for w < —1/3, the rightmost part of the locus B is comprised by this line
segment, which extends from g = g;,, in (8.9) to ¢, ; in (7.1). Thus, for w < —1/3, the locus
B consists of a teardrop-shaped curve crossing the real axis on the left at ¢ = 1 and on the
right at ¢ = g;,, (with the bulbous part of the teardrop on the left and the sharp part on the
right), together with a line segment extending over the interval g;,y < g < ¢.,1. Atw = —1/3,

1
10 w=-13= 5[(61 -2 +/(g—4Hg—-&/3)] 8.17)

For this value w = —1/3, and ¢ =4, the pair A, ¢, ;, j = 1, 2, are equal to each other and are
also equal to the magnitude |A; ;| = 1. As w — —00, g;,y — 17, so the teardrop curve con-
tracts to a point at ¢ = 1 while the right-hand endpoint of the line segment at g, ; approaches
infinity like g, ~ 4|w|.

One can also calculate the loci B, for the n — oo limits of other families of graphs.
However, our discussion for the n — oo limits of line graphs L, and circuit graphs C,
already exhibit a number of salient features of these loci.
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9 Locus B, for Circuit Graphs

Here we discuss the locus 5, as a function of g for the n — oo limit of the circuit graph
C,. First, we note that if ¢ = 1 or ¢ = 2, then we encounter the noncommutativity (6.4).
For ¢ = 1, this is evident from (2.18), according to which if we set ¢ = 1 first and then
take n — oo, the problem is trivial, since Ph(C,, 1, w) vanishes identically. For g = 2, the
noncommutativity is evident from our general result in (4.32), because the coefficient of the
(A" term in Ph(C,, g, w) vanishes if g = 2. If we first take n — oo and then set g =2, we
have A1 ; = £+/w, so that the locus B,, is the union of the semi-infinite real line segments
w > 1 and w < —1. If, on the other hand, we first set ¢ = 2, and then vary n, our result
(4.32) shows that the limit of Ph(C,, 2, w) as n — oo does not exist, since Ph(C,, 2, w) is
alternatively zero for odd n and 2w™/? for even n. If we restrict to odd 7, then the problem
of the zeros of Ph(C,, 2, w) is trivial since the function itself vanishes identically, while if
we restrict to even n, then the locus 3, degenerates to a point at w = 0, corresponding to
the zero at this point with multiplicity n /2.

From (2.22) we know that for ¢ = 0, Ph(G, 0, w) contains a factor of (w — 1) for an
arbitrary graph G, and this is true, in particular, for G = C,,.. The other zeros occur at real
values w > 1. For this value ¢ = 0, it follows that A, ; = —1 £ /1 — w, and these are
dominant A’s if w # 1, so B, is the semi-infinite real line segment w > 1. For g #0, 1, 2
we typically find that the locus B,, may consist of the union of a (self-conjugate) loop and a
line segment. Details depend on the specific value of g.

10 B for Wheel Graphs

We have also calculated the locus B for wheel graphs. We denote the n — oo limit of the
graph Wh,, as {Wh}. For w = 1, B, is the unit circle |g — 2| = 1, which crosses the real axis at
g =1 and g, = 3 and separates the ¢ plane into two regions. In the region with |g —2| > 1,
i.e., the region exterior to this circle, ® ({Wh}, ¢, 1) = W({Wh}, g) = g — 2. In the for which
lg —2| < 1, i.e., the region interior to the circle, | ({Wh}, g, 1)| = |W({Wh},q)| = 1.

As w decreases from 1 in the DFCP interval, the boundary B, continues to form a closed
curve separating the ¢ plane into two regions, as it did for w = 1, but there is a discontinuous
jump in the crossing point on the left, from ¢ = 1 to ¢ = 2. This is similar to what we found
for the n — oo of the circuit graph, where the jump in the crossing point on the left was
from g =0 to g = 1. The crossing point on the right is

_2w+2)

— for {G} ={C} (10.1)

Region R includes the real interval ¢ > ¢. and the portion of the complex g plane analyt-
ically connected with this interval, and thus lying outside of the boundary 3,. Region R,
occupies the portion of the g plane inside of the boundary B,. The dominant A in region R;
iS Awn,+, while the dominant A in R, is equal to —1. The point g, occurs where these are de-
generate in magnitude. Given this and the relation (3.33), it follows that g, for {G} = {Wh}
is related to g, for {G} = {C}, given in (8.5), by replacing g by ¢ — 1. That is, if one replaces
q. on the left-hand side of (8.5) by ¢. — 1 and solves for the new ¢, one obtains (10.1). This
is in accord with the fact that the proper g-coloring of the wheel graph with g colors is
closely related to the proper coloring of the circuit graph with g — 1 colors. As w decreases
from 1 to 0 in the DFCP interval the g, in (10.1) increases continuously from 3 to 4. One
can also analyze other ranges of w and the locus B,, in a similar manner.
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11 Some Observations and Conjectures
11.1 Sign Alternation of Successive Terms in Ph(G, g, w)

One can write the chromatic polynomial P (G, ¢) of a graph as

n—1

P(G, Q) = ZaG,)z—_/ L]n_j, (111)

=0

where, without loss of generality, we take G to be connected. The signs of the coefficients
oG n—j alternate:

sgn(og )= (=1, 0<j<n-—1. (11.2)

This is proved by iterated application of the deletion-contraction theorem. Since the
weighted chromatic polynomial Ph(G, q,w) does not, in general, obey a deletion-
contraction theorem, except for the values w = 1 and w = 0 for which it reduces to a
chromatic polynomial (see (1.1) and (1.2)), one does not expect the coefficients g ,—;(w)
in Ph(G, g, w) to have this sign-alternation property, and they do not. However, from our
analysis of weighted coloring polynomials for several families of graphs, we have no-
ticed that for a restricted range of w, namely 0 < w < 1, this sign alternation again holds,
namely sgn(ag ,—;(w)) = (=1)/ for 0 < j <n — 1. For j = n, namely for the ¢° term in
Ph(G, q, w), the sign alternation also holds for 0 < w < 1; here the coefficient ¢ o contains
the factor (w — 1) and hence vanishes at w = 1. We also find that this sign alternation prop-
erty holds, as far as we have checked it, for real negative w. It is of interest to investigate
whether this sign alternation property for w < 1 holds on other families of graphs. We are
currently continuing with this investigation.

Related to this, it is of interest to study where the coefficients a ,—;(w) vanish in the
complex w plane. From our calculation of weighted chromatic polynomials for line and
circuit graphs L, and C,, we have observed that for the graphs we have considered, the
coefficients ay, ,—; and ac, ,—; for 1 < j <n — 1 have zeros in the real interval w > 1,
while for the coefficients «;, o and ac, ¢ have, in addition to the always-present zero at
w =1 (recall (2.22) and (2.33)), the other zeros, if any, again occur in the real interval
w > 1. In contrast, we find that for other graphs, the coefficients ¢ ,—; may have complex-
conjugate pairs of zeros. For example, in Ph(S4, g, w), the coefficient of the g term, a5, | =
w3 —9w? 427w — 20, has zeros at w =~ 1.087 and w ~ 3.9565 £ 1.6566i, and the coefficient
of the ¢° term, g, o = —(w — 1)(w? — Sw+8), has zeros at w = 1 and w = (1/2)(5£+/7i).
Similarly, coefficients of star graphs S, for larger n include cases having complex-conjugate
pairs of zeros in the w plane.

11.2 Generalized Unimodal Conjecture

From his study of chromatic polynomials, R. Read observed that the magnitudes of the co-
efficients of successive powers of ¢"~/, 0 < j <n — k(G) in a chromatic polynomial satisfy
a unimodal property [8]. That is, the magnitudes of these coefficients get successively larger
and larger, and then smaller and smaller, as j increases from O to n — k(G). There is thus
a unique maximal-magnitude coefficient, or two successive coefficients whose magnitudes
are equal. From our calculations of weighted chromatic polynomials for a number of fam-
ilies of graphs, we have observed that in the interval 0 < w <1 this property continues to
hold. We therefore state the following conjecture: Conject. Let Ph(G, q, w) be written as in
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(2.30). Then for real w in the interval 0 < w < 1, the quantities (—l)jag,,,,j(w), 0<j<n,
are positive and satisfy the unimodal property, i.e., (—1)/ag ,—j(w) get progressively larger
and larger, and a maximal value is reached for a given j, or for two successive j values, and
then the quantities (—1)/ &g ,—; (w) get progressively smaller, as j increases from 0 to .

12 Some Generalizations

Although we have focused in this paper on the proper g-coloring of vertices with one color
given a disfavored or favored weighting, we discuss some generalized weighted coloring
problems in this section. We first present an extension of (2.4) to the most general case of
different fields H,, p =1,..., g, and hence different weighting factors, for each of the g
different colors. The generalization to multiple fields corresponding to different spin values
in the Potts model was noted, e.g., in [34, 35] and [36] and more recently in [25]. The
Hamiltonian for this case is

q
H==J) 8., —Z[H,,Zs(,l,p]. (12.1)
(ij) p=1 4

Let us define

h,=pH,, w,=¢" forl<p<g (12.2)
and denote the set of w,, p=1,..., ¢ as {w}. The partition function is a function of g, v,
and {w}, and hence we write it as Z(G, ¢, v, {w}). For v = —1, the resultant generalized

weighted chromatic polynomial is Ph(G, ¢, {w}) = Z(G, q, —1, {w}).
We have derived the following generalization of the Wu formula for this case (where, as
before, G’ is a spanning subgraph of G):

kG [ 4 )
Z(G,q.v, wh =Y v [] (Z w}’,(Gf’). (12.3)

G'CG i=1 \p=lI

Proof The spins in each component G| of G’ are connected by edges, so they all have the
same value, and there are g possibilities for this value. For a given spanning subgraph G,

Lo . ' G| . .
the weighting factor is the product H:‘g )(Z’[I,:l w;( ’)). This subgraph thus contributes a

term v*(@" ]_[fg/) i w;(Gi Y to Z. Summing over all spanning subgraphs G’ then yields

the result (12.3). O

The resultant spanning graph formula for the generalized weighted chromatic polynomial
Ph(G, q, {w}) is obtained by evaluating (12.3) at v = —1:

KG) [ 4 )
Ph(G.q.{wh= D (D ] (Z wji(G")>. (12.4)

G'CG i=1 \p=1

Note that some w,’s may disfavor certain color(s), i.e., 0 < w, < 1, while others may
favor other color(s), w, > 1. Note also that in the general situation with different H),,
p=1,...,q,the dependence of Ph(G, g, {w}) on q appears viathe w,, p=1, ..., q rather
than via a polynomial dependence on the variable ¢.
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Let us illustrate this generalization for the case where a set of s colors is subject to a
given (disfavored or favored) weighting, i.e. (where without loss of generality, we label
these s colorsas 1, 2,...,5s)

_|H#0 forl<p<s
Hp_{O fors+1<p<gqg (12.5)

so that

wp={w7él forl<p<s (12.6)

1 fors+1<p<gq.

Then, with Z(G, g, v, {w}) written compactly as Z(G, g, s, v, w) in an evident notation,
(12.3) takes the form

k(G
Z(G,q,s,v,w) = Z @ H(q—s%—sw"(aﬁ‘)) (12.7)
i1

G'CG

(To avoid awkward notation, we use the same symbol Z for the Potts model partition func-
tion with the various sets of arguments, Z(G, ¢, v), Z(G, q,v,w), Z(G, g, v, {w}), and
Z(G,q,s,v,w).) Writing the weighted chromatic polynomial Ph(G, ¢, v, {w}) in the same
notation as Ph(G, q, s, w), we have

Ph(G,q,s,w) = Z(G,q,s, —1,w). (12.8)

With Yan Xu at Stony Brook, a study of the properties of the generalized weighted chromatic
polynomial Ph(G, g, s, w) has been carried out, and the results will be reported elsewhere.
We note here that since s only appears in (12.7) in the combination

k(G k(G n(G;)*]
1—[(61_5+5wn(6;)): 1—[ <q+s(w— 1 Z wr), (12.9)
r=0

i=1 i=1

it follows that Z(G, g, s, v, w) and Ph(G, ¢q, s, w) can equivalently be written as polynomi-
als in the variables ¢, v,

t=s(w—1), (12.10)

and w. We mention the following general relations involving Z(G,gq,s,v,w) and
Ph(G, g, s, w) that hold for r = 0:

Z2(G,q,0,v,w) =Z(G,q,s,v,1)=Z(G, q,v), (12.11)
Ph(G,q,0,w) = Ph(G,q,s,1)=P(G,q), (12.12)

and the general relations that hold for w = 0:
zZ(G,q,s,v,0)=Z(G,q — s, v), (12.13)

and

Ph(G,q,s,0)=P(G,q —s). (12.14)
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From (12.11) and (12.12), it is clear that for s = 0, the Z and Ph polynomials reduce to their
zero-field forms. A similar reduction to a factor times the zero-field forms occurs if s = g:

Z(G,q,q,v,w)=w"9Z(G,q,v) (12.15)

and
Pi(G.q,q,w) =w"P(G,q). (12.16)
Hence, we are primarily interested in the values s = 1, ..., ¢ — 1. Assuming that G contains

at least one edge, then, if ¢ = 1, it is impossible to satisfy the proper g-coloring constraint,
so Ph(G, 1,s,w) = 0. This vanishing does not, in general, result as a consequence of an
explicit (g — 1) factor, unless s = 0 or s = 1. Instead, when one sets ¢ = 1 in Ph(G, ¢q, s, w),
one obtains a polynomial with a factor of s(s — 1)(w — 1)2. Since s is a non-negative integer
bounded above by ¢, the condition that ¢ = 1 implies that s is either O or 1, and hence this
factor must vanish, yielding the necessary result that Ph(G, 1, s, w) = 0. One could also
study connections with weighted loop models [37, 38].

A different type of generalization is to have the spin-spin couplings depend on the edges
of the graph G, so they would be of the form J;; = J,, where i and j denote adjacent ver-
tices of G connected by the edge e. The study of spin models with spin-spin couplings that
are different for different lattice directions goes back to the early decades of the twentieth
century, reflecting the fact that there are often anisotropies in real magnetic substances. In
the 1960’s and 1970’s, anisotropic spin-spin couplings were studied to investigate how, for
various ferromagnetic and antiferromagnetic combinations on different lattices, they could
affect critical behavior [39—41]. In the 1970’s and later the further generalization to spin-spin
couplings that depend on each edge was studied in connection with disordered materials and
the question of how such disorder changed the critical behavior [42, 43]; and discussions of
edge-dependent J;; continue [25]. The Hamiltonian for the general Potts model for this case,
including the full set of ¢ different external fields, is

q

H=—=> Jijo., —Z[szfsw,p]. (12.17)
) ¢

(ij p=l1
Let us define
Kij:ﬂ‘]ijv v,»j:eK"f —1 (1218)

and denote the set of all v;; as {v}. The partition function is then Z(G, q, {v}, {w}). We
give the following general formula for this partition function, where again G' = (V, E’) isa
spanning subgraph of G:

kG [ 4 ,
Z(G,q, ), (wh =) []_[ ve} []_[ (Z wZ(G")>]. (12.19)

G'CG ecE i=1 \p=l

For the weighted proper g-coloring problem, v, = —1 Ve € E, so this generalization re-
duces to (12.4). Having derived and presented spanning graph formulas for the Potts model
partition function and weighted chromatic polynomial for these generalized cases, we focus
henceforth on the simple case where only one color is subject to the (disfavored or favored)
weighting. Note, as before, that in the general situation, the dependence of Z(G, g, {v}, {w})
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on g appears via the w,, p =1, ..., q rather than via a polynomial dependence on the vari-
able g. We illustrate these generalizations with the circuit graph G = C3. Let us define
nr =Y 5 w),. Then from (12.19) we have

Z(C37 q, {v}! {U)})

=1} + (V12 + Va3 + v3) MM + [(Vi2v2s + V2331 + V31v2) + Viovasva 03 (12.20)

and, setting v, = —1 for all of the edges in C;, we obtain Ph(C3, g, {w}) = n? —3nom +2n3.
Yet another generalization is to make the sets of colors that one chooses from to assign
to each vertex depend on the vertex. With the weighting, this defines a new weighted list-
coloring problem. A practical realization of this problem is the allocation of frequencies to
radio broadcasting or wireless mobile communication transmitters where each individual
transmitter has its own set of available frequencies, no adjacent transmitters should use the
same frequency, and there are various disfavored and/or favored frequencies. For a graph
G = (V, E), we denote the list of available colors for a given vertex as {c;}, where i =
1,...,n(G), and we denote the set of all color lists with the symbol {{c}} = {{c1}, ..., {c.}}-
We define the associated partition function as Z(G, {{c}}, {v}, {w}) = Z{a’_)exp(—ﬁH),
with
q
H== Jijbs.0; —Z[H,,Zaw_p}, (12.21)
(ij) p=1 ¢
where o; takes on values in the list {c;}. As before, one may consider special cases of this
weighted list coloring problem in which, e.g., the J;; are constants, independent of the edge
joining the vertices i and j, and/or where the H), are of the simple form (12.5), etc. As a sim-
ple example, we again take the circuit graph G = C5 and choose the available color lists for
each vertex as {c;} = (1, 2), {c2} = (2, 3), {c3} = (1, 3). The generalized weighted chromatic
polynomial for this weighted list coloring problem would then be 2w;w, w3 corresponding
to the color assignments (1,2, 3) and (2, 3, 1) to vertices i = 1, 2, 3. In passing, we re-
call the case where there are no external fields or corresponding weightings, i.e., H, =0, so
w, = lforall p=1,...,q.This is the usual unweighted list coloring problem, as reviewed,
e.g., in [44]. For example, for the case G = C5 with the color lists given above, the list chro-
matic polynomial is 2. In contrast, for G = C5 with color lists {c;} = (1, 2, 3), {c2} = (1, 2),
and {c3} = (1) there is only one proper coloring, namely the color assignment (3,2, 1) to
vertices 1, 2, 3, so the list coloring polynomial is equal to 1.

13 Conclusions

In this paper we have studied proper g-colorings of the vertices of a graph with a weight-
ing factor w that either disfavors or favors a given color. In particular, we have analyzed
a weighted chromatic polynomial Ph(G, g, w) associated with this problem, which gener-
alizes the chromatic polynomial P(G, ¢q). Since Ph(G, g, w) can be obtained as a special
limit of the Potts model partition function in an external magnetic field, its study represents
a fruitful confluence of statistical mechanics and mathematical graph theory. We have found
a number of interesting properties of this weighted chromatic polynomial. Among others,
we have shown how it encodes more information about the graph G, as shown by the fact
that it is able to distinguish between certain graphs that yield the same chromatic polyno-
mial. We have given formulas for Ph(G, g, w) for various families of graphs G, including
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line graphs, star graphs, complete graphs, and cyclic lattice strip graphs. For w € (0, 1),
Ph(G, g, w) effectively interpolates between P(G, ¢q) and P(G, g — 1). Using our results,
we have discussed the zeros of Ph(G, ¢, w) in the g and w planes and their accumulation
sets in the limit of infinitely many vertices of G. Finally, we have mentioned some observa-
tions, conjectures, and related weighted graph-coloring problems. There is ample motivation
for further research on this very interesting subject.

Acknowledgements This research was partly supported by the grants Taiwan NSC-97-2112-M-006-007-
MY3 and NSC-98-2119-M-002-001 (S.-C.C.) and U.S. NSF-PHY-06-53342 (R.S.).

Appendix A: Tables on Structural Properties

For comparison with our new results for np,(Ly, d) and Npj, 1., we list here corresponding
tables for the following numbers for cyclic strips of the square (sq), triangular (tri), and
honeycomb (hc) lattices A: (Table 2) np(L,, d) and their sums, Np ;, ; for the chromatic
polynomial with h = 0, (Table 3) nz(L,,d) and their sums, N, Lmlfor the Potts model
partition function with 4 = 0, and (Table 4) nz;,(L,,d) and their “sums, Nzp.1,». for the
Potts model partition function with 4 #£ 0 [1, 2]. V

Table 2 Table of numbers np(Ly, d) and their sums, Np 1, ; for the chromatic polynomial of cyclic strips
of the lattice A (sq, tri, hc) with 2 = 0. Blank entries are zero. See text for further discussion

Lyld— 0 1 2 3 4 5 6 7 8 NP,Ly,A
1 1 1

2 1 2 1

3 2 4 3 1 10

4 4 9 8 4 1 26

5 9 21 21 13 5 1 70

6 21 51 55 39 19 6 1 192

7 51 127 145 113 64 26 7 1 534

8 127 323 385 322 203 97 34 8 1 1500

Table 3 Table of numbers nz(Ly,d) and their sums, Nz ¢, ;. for the Potts model partition function on
cyclic strips of the lattice A (sq, tri, hc) with 2 = 0. Blank entries are zero. See text for further discussion

Lyld— 0 1 2 3 4 5 6 7 8§  NzLya
1 1

2 3

3 5 9 5 1 20

4 14 28 20 7 1 70

5 4 90 75 35 9 1 252

6 132 297 275 154 54 11 1 924

7 429 1001 1001 637 273 77 13 1 3432

8 1430 3432 3640 2548 1260 440 104 15 1 12870
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Table 4 Table of numbers nzj(Ly,d) and their sums, Nz, Ly for the Potts model partition function on
strips of the lattice A (sq, tri, hc) with 4 # 0. Blank entries are zero. See text for further discussion

Ly\d 0 1 2 3 4 5 6 7 8 Nzn.L,
1 3
2 5 5 1 11
3 15 21 8 1 45
4 51 86 46 11 1 195
5 188 355 235 80 14 1 873
6 731 1488 1140 489 123 17 1 3989
7 2950 6335 5397 2730 875 175 20 1 18483
8 12235 27352 25256 14462 5530 1420 236 23 1 86515

Appendix B: Ph(G, q, w) for Tree Graphs G
B.1 n =35 Vertices

There are three tree graphs with n = 5 vertices, as shown in Fig. 1: (i) the line graph Ls,
(ii) the graph Y5, and (iii) the star graph Ss. The weighted chromatic polynomials for these
are

Ph(Ls,q,w) = (g — D[q* + 5w — 8)g° + 3Qw* — 9w + 8)¢”
+ (w —2)(w* — 16w + 16)g — (w — 1) (w* — 12w + 16)]
=q° — (9 —=5w)g* + 2w —H)Bw — 4)q> — (—w* + 24w? — 75w + 56)g>
+ (—2w? + 31w? — 76w + 48)g — (1 — w)(w? — 12w + 16) (B.1)
Ph(Ys,q, w) = (g — D(g +w —2)[¢’ +2Qw — 3)g* + Qw* — 13w + 12)q
—(w—1DE@w—8)]
=¢° — (9 —=5w)g* + 2w —4)Bw — 4)g> — 2(—w* + 13w? — 38w + 28)4>
+ (=5w® 4+ 37w? — 19w 4 48)g — (w — 1)(w — 2)(8 — 3w) (B.2)
Ph(Ss,q,w) = (¢ — D[g* + 5w — 8)¢° + 32w’ — 9w + 8)¢”
+ (4w’ — 24w’ + 51w — 32)g + (w — (W’ = Tw’ + 17w — 16)]
=q° — (9 —5w)g* +2(w —H)Bw — 4)g>
—2(=2w? + 15w? — 39w + 28)g>
+ (w* — 12w + 48w? — 84w + 48)¢g
—(w— D —Tw?*+ 17w — 16) (B.3)
B.2 Ph(G, g, w) for Tree Graphs with n = 6 Vertices
There are six tree graphs with n = 6 vertices, as shown in Fig. 6: (i) the line graph Lg,

(ii) the graphYs, (iii) the graph with a branch in the middle of the line, denoted iso — Y4
(iv) a graph with two branches, denoted Hg, (v) a graph forming a cross, denoted Crg, and
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Fig. 6 Tree graphs withn =6

(vi) the star graph Se. (Again, we order these in terms of graphs with increasing maximal
vertex degree A; one has A =2, 3, 3, 3, 4, 5 for graphs (i)—(vi), respectively.) We find

Ph(Lg, q,w) = (¢ — D[q* +2(w — 2)g — 3w + 4][¢” +2Qw — 3)¢°

+ Qw? — 13w+ 12)g —2(w — D(w — 4)]

=4q°— (11— 6w)g’ + 10w’ — 5w + 5)q*
—2(=2w> +29w? — 82w + 60)g>
+ (—14w® + 123w? — 264w + 160)g>
— (—16w* + 113w? — 208w + 112)g
+2(1 —w)(4 —3w)(4 —w)

Ph(Ys,q, w) = (¢ — D[q° +2Gw — 5)g* + 2(5w? — 22w +20)¢°

+ (5w® — 50w? + 121w — 80)g>
+ (w* — 16w> + 84w? — 148w + 80)g
—(w—Dw—4Hw* —Tw+8)]

=¢® — (11 — 6w)g® + 10(w? — 5w + 5)¢*
—5(—w® 4+ 12w? — 33w + 24)¢°>
+ (w* — 21w + 134w? — 269w + 160)g>
— Quw* — 28w’ + 131w? — 216w + 112)g
+w—1D(w—4)w* —Tw+8)

(B.4)

(B.5)

Ph(Hs, g, w) = (g — D(q — 2+ w)[q* + Sw — 8)¢” + (w — H) (5w — 6)¢*

+ (= 14w’ + 45w — 32)g + 2(w — (5w — 8)]
=¢°— (11— 6w)q’ +10(w? — 5w + 5)¢*

—5(—w? + 12w? — 33w + 24)4°

+ (—19w? + 133w? — 269w + 160)¢g>

— (—24w* + 129w? — 216w + 112)g

+2(w — D)(w —2)(8 — 5w)

(B.6)
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Ph(He, q,w) = (¢ — 1)(g =2+ w)*[¢° + 2Qw — 3)¢” + (w* — 12w + 12)¢q
—2(w—D(w—4)]
=q°%— (11 —6w)g’ + 10(w? — 5w + 5)¢*
—2(=3w? + 31w? — 83w + 60)¢°
+ (w* — 26w + 144w? — 274w + 160)g>
— (w —2)Bw® —32w? + 84w — 56)q
+2(w— D(w —2)*(w—4) (B.7)
Ph(Cre,q, w) = (g — (g =2+ w)[q* + 5w — 8)g* + (w — ) (Sw — 6)¢*
+ Qw’ — 18w’ + 47w — 32)g — (w — ) Bw* — 13w + 16)]
=q°%— (11 — 6w)g’ + 10(w? — 5w + 5)¢*
— (=7w® 4 64w? — 167w + 120)4°
+ Quw* — 32w + 153w? — 278w + 160)¢>
— Gw* — 47w? 4+ 160w? — 229w + 112)g
+(w =1 (w —2)Bw? — 13w + 16) (B.8)
Ph(Ss, g, w) = (¢ — D[q° +2Bw — 5)g* + 2(5w* — 22w + 20)g°
+2(5w* — 30w? + 63w — 40)g>
+ (5w* — 40w’ 4 120w? — 164w + 80)g
+ (w— D(w* — 9w’ +31w> — 49w + 32)]
=¢° — (11 — 6w)g® + 10(w? — 5w + 5)¢*
—10(—w? + 7Tw? — 17w + 12)¢°
+5(w* — 10w® 4 36w? — 58w + 32)¢°
— (—w® + 15w* — 80w? 4 200w? — 245w + 112)g
+ (1 —w)(w* — 9w’ + 31w* — 49w + 32) (B.9)

Among other things, these calculations can be used to characterize further the way in
which the weighted chromatic polynomial is able to distinguish between graphs that yield
the same chromatic polynomial. As discussed in the text, all tree graphs with a given number
n of vertices yield the same chromatic polynomial, P (G ee.n» ¢) = q(g —1)"! (and, indeed,
also the same Tutte polynomial 7' (Gyree,, X, y) = x"~1). Using our results above, we calcu-
late the following differences in weighted chromatic polynomials, relative to Ph(Ss, ¢, w),
for definiteness, from which all other differences can be obtained:

Ph(Ss,q, w) — Ph(Lg, q, w)

=w(w — D*(g — D[Bg +w)(2g + w) —20g — 8w + 17] (B.10)
Ph(S6$ q, ll)) —Ph(Yﬁ, q, w)
=w(w — 1)*(q — )(5¢* + 4wqg + w* — 16 — Tw + 13) (B.11)
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Ph(Ss, g, w) — Ph(Hg, q, w)

=w(w —1)*(g — D[5¢* + 5wq + w* — 16g — 8w + 13] (B.12)
Ph(Ss, g, w) — Ph(Hg, g, w) = w(w — 1)* (g — 1)(2g — 3 + w)? (B.13)
Ph(S¢, q, w) — Ph(Crg, q, w)

=w(w — 1)’ (g — D[3¢* + 3wg + w*> — 9g — 5w + 7] (B.14)

We thus find that the weighted chromatic polynomials for all of the different n-vertex tree
graphs of a given n are, in general, different from each other, although they coincide for
w =1 and w = 0, where they reduce to chromatic polynomials, and for g = 1, where they
all vanish.
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